, a bio/informatics shared resource is still "open for business" - Visit the CDS website


Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 92

Publication Record

Connections

VHL substrate transcription factor ZHX2 as an oncogenic driver in clear cell renal cell carcinoma.
Zhang J, Wu T, Simon J, Takada M, Saito R, Fan C, Liu XD, Jonasch E, Xie L, Chen X, Yao X, Teh BT, Tan P, Zheng X, Li M, Lawrence C, Fan J, Geng J, Liu X, Hu L, Wang J, Liao C, Hong K, Zurlo G, Parker JS, Auman JT, Perou CM, Rathmell WK, Kim WY, Kirschner MW, Kaelin WG, Baldwin AS, Zhang Q
(2018) Science 361: 290-295
MeSH Terms: Animals, Carcinoma, Renal Cell, Chromatin Immunoprecipitation, Female, Gene Expression Regulation, Neoplastic, Homeodomain Proteins, Humans, Hydroxylation, Kidney Neoplasms, Mice, Mice, SCID, Molecular Targeted Therapy, Mutation, NF-kappa B, Oncogenes, Substrate Specificity, Transcription Factors, Von Hippel-Lindau Tumor Suppressor Protein
Show Abstract · Added October 30, 2019
Inactivation of the von Hippel-Lindau (VHL) E3 ubiquitin ligase protein is a hallmark of clear cell renal cell carcinoma (ccRCC). Identifying how pathways affected by VHL loss contribute to ccRCC remains challenging. We used a genome-wide in vitro expression strategy to identify proteins that bind VHL when hydroxylated. Zinc fingers and homeoboxes 2 (ZHX2) was found as a VHL target, and its hydroxylation allowed VHL to regulate its protein stability. Tumor cells from ccRCC patients with loss-of-function mutations usually had increased abundance and nuclear localization of ZHX2. Functionally, depletion of ZHX2 inhibited VHL-deficient ccRCC cell growth in vitro and in vivo. Mechanistically, integrated chromatin immunoprecipitation sequencing and microarray analysis showed that ZHX2 promoted nuclear factor κB activation. These studies reveal ZHX2 as a potential therapeutic target for ccRCC.
Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
1 Members
0 Resources
MeSH Terms
The proto-oncogene function of Mdm2 in bone.
Olivos DJ, Perrien DS, Hooker A, Cheng YH, Fuchs RK, Hong JM, Bruzzaniti A, Chun K, Eischen CM, Kacena MA, Mayo LD
(2018) J Cell Biochem 119: 8830-8840
MeSH Terms: Analysis of Variance, Animals, Bone Density, Bone Remodeling, Calcification, Physiologic, Cancellous Bone, Cell Line, Tumor, Female, Humans, Male, Mice, Mice, Inbred C57BL, Mice, Inbred DBA, Osteoblasts, Osteoclasts, Osteogenesis, Osteosarcoma, Proto-Oncogene Proteins c-mdm2, Proto-Oncogenes
Show Abstract · Added April 1, 2019
Mouse double minute 2 (Mdm2) is a multifaceted oncoprotein that is highly regulated with distinct domains capable of cellular transformation. Loss of Mdm2 is embryonically lethal, making it difficult to study in a mouse model without additional genetic alterations. Global overexpression through increased Mdm2 gene copy number (Mdm2 ) results in the development of hematopoietic neoplasms and sarcomas in adult animals. In these mice, we found an increase in osteoblastogenesis, differentiation, and a high bone mass phenotype. Since it was difficult to discern the cell lineage that generated this phenotype, we generated osteoblast-specific Mdm2 overexpressing (Mdm2 ) mice in 2 different strains, C57BL/6 and DBA. These mice did not develop malignancies; however, these animals and the MG63 human osteosarcoma cell line with high levels of Mdm2 showed an increase in bone mineralization. Importantly, overexpression of Mdm2 corrected age-related bone loss in mice, providing a role for the proto-oncogenic activity of Mdm2 in bone health of adult animals.
© 2018 Wiley Periodicals, Inc.
0 Communities
2 Members
0 Resources
19 MeSH Terms
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context.
Chiu HS, Somvanshi S, Patel E, Chen TW, Singh VP, Zorman B, Patil SL, Pan Y, Chatterjee SS, Cancer Genome Atlas Research Network, Sood AK, Gunaratne PH, Sumazin P
(2018) Cell Rep 23: 297-312.e12
MeSH Terms: Cell Line, Cell Line, Tumor, Gene Expression Regulation, Neoplastic, Gene Regulatory Networks, Genes, Tumor Suppressor, Humans, Neoplasms, Oncogenes, RNA, Long Noncoding
Show Abstract · Added October 30, 2019
Long noncoding RNAs (lncRNAs) are commonly dysregulated in tumors, but only a handful are known to play pathophysiological roles in cancer. We inferred lncRNAs that dysregulate cancer pathways, oncogenes, and tumor suppressors (cancer genes) by modeling their effects on the activity of transcription factors, RNA-binding proteins, and microRNAs in 5,185 TCGA tumors and 1,019 ENCODE assays. Our predictions included hundreds of candidate onco- and tumor-suppressor lncRNAs (cancer lncRNAs) whose somatic alterations account for the dysregulation of dozens of cancer genes and pathways in each of 14 tumor contexts. To demonstrate proof of concept, we showed that perturbations targeting OIP5-AS1 (an inferred tumor suppressor) and TUG1 and WT1-AS (inferred onco-lncRNAs) dysregulated cancer genes and altered proliferation of breast and gynecologic cancer cells. Our analysis indicates that, although most lncRNAs are dysregulated in a tumor-specific manner, some, including OIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergistically dysregulate cancer pathways in multiple tumor contexts.
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types.
Seiler M, Peng S, Agrawal AA, Palacino J, Teng T, Zhu P, Smith PG, Cancer Genome Atlas Research Network, Buonamici S, Yu L
(2018) Cell Rep 23: 282-296.e4
MeSH Terms: Cell Line, Tumor, Genes, Tumor Suppressor, Humans, Loss of Function Mutation, Mutation Rate, Neoplasms, Oncogenes, RNA Splicing, RNA Splicing Factors
Show Abstract · Added October 30, 2019
Hotspot mutations in splicing factor genes have been recently reported at high frequency in hematological malignancies, suggesting the importance of RNA splicing in cancer. We analyzed whole-exome sequencing data across 33 tumor types in The Cancer Genome Atlas (TCGA), and we identified 119 splicing factor genes with significant non-silent mutation patterns, including mutation over-representation, recurrent loss of function (tumor suppressor-like), or hotspot mutation profile (oncogene-like). Furthermore, RNA sequencing analysis revealed altered splicing events associated with selected splicing factor mutations. In addition, we were able to identify common gene pathway profiles associated with the presence of these mutations. Our analysis suggests that somatic alteration of genes involved in the RNA-splicing process is common in cancer and may represent an underappreciated hallmark of tumorigenesis.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas.
Schaub FX, Dhankani V, Berger AC, Trivedi M, Richardson AB, Shaw R, Zhao W, Zhang X, Ventura A, Liu Y, Ayer DE, Hurlin PJ, Cherniack AD, Eisenman RN, Bernard B, Grandori C, Cancer Genome Atlas Network
(2018) Cell Syst 6: 282-300.e2
MeSH Terms: Basic Helix-Loop-Helix Leucine Zipper Transcription Factors, Basic Helix-Loop-Helix Transcription Factors, Biomarkers, Tumor, Carcinogenesis, Chromatin, Computational Biology, Genes, myc, Genomics, Humans, Neoplasms, Oncogenes, Proteomics, Proto-Oncogene Proteins c-myc, Repressor Proteins, Signal Transduction, Transcription Factors
Show Abstract · Added October 30, 2019
Although the MYC oncogene has been implicated in cancer, a systematic assessment of alterations of MYC, related transcription factors, and co-regulatory proteins, forming the proximal MYC network (PMN), across human cancers is lacking. Using computational approaches, we define genomic and proteomic features associated with MYC and the PMN across the 33 cancers of The Cancer Genome Atlas. Pan-cancer, 28% of all samples had at least one of the MYC paralogs amplified. In contrast, the MYC antagonists MGA and MNT were the most frequently mutated or deleted members, proposing a role as tumor suppressors. MYC alterations were mutually exclusive with PIK3CA, PTEN, APC, or BRAF alterations, suggesting that MYC is a distinct oncogenic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such as immune response and growth factor signaling; chromatin, translation, and DNA replication/repair were conserved pan-cancer. This analysis reveals insights into MYC biology and is a reference for biomarkers and therapeutics for cancers with alterations of MYC or the PMN.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Dependence On Glycolysis Sensitizes BRAF-mutated Melanomas For Increased Response To Targeted BRAF Inhibition.
Hardeman KN, Peng C, Paudel BB, Meyer CT, Luong T, Tyson DR, Young JD, Quaranta V, Fessel JP
(2017) Sci Rep 7: 42604
MeSH Terms: Antineoplastic Agents, Cell Line, Tumor, Drug Resistance, Neoplasm, Glucose, Glycolysis, Humans, Indoles, Melanoma, Molecular Targeted Therapy, Mutation, Oncogenes, Pharmacogenomic Variants, Phenotype, Protein Kinase Inhibitors, Proto-Oncogene Proteins B-raf, Sulfonamides, Treatment Outcome
Show Abstract · Added April 18, 2017
Dysregulated metabolism can broadly affect therapy resistance by influencing compensatory signaling and expanding proliferation. Given many BRAF-mutated melanoma patients experience disease progression with targeted BRAF inhibitors, we hypothesized therapeutic response is related to tumor metabolic phenotype, and that altering tumor metabolism could change therapeutic outcome. We demonstrated the proliferative kinetics of BRAF-mutated melanoma cells treated with the BRAF inhibitor PLX4720 fall along a spectrum of sensitivity, providing a model system to study the interplay of metabolism and drug sensitivity. We discovered an inverse relationship between glucose availability and sensitivity to BRAF inhibition through characterization of metabolic phenotypes using nearly a dozen metabolic parameters in Principle Component Analysis. Subsequently, we generated rho0 variants that lacked functional mitochondrial respiration and increased glycolytic metabolism. The rho0 cell lines exhibited increased sensitivity to PLX4720 compared to the respiration-competent parental lines. Finally, we utilized the FDA-approved antiretroviral drug zalcitabine to suppress mitochondrial respiration and to force glycolysis in our cell line panel, resulting in increased PLX4720 sensitivity via shifts in EC50 and Hill slope metrics. Our data suggest that forcing tumor glycolysis in melanoma using zalcitabine or other similar approaches may be an adjunct to increase the efficacy of targeted BRAF therapy.
1 Communities
4 Members
0 Resources
17 MeSH Terms
Viral infection causes a shift in the self peptide repertoire presented by human MHC class I molecules.
Spencer CT, Bezbradica JS, Ramos MG, Arico CD, Conant SB, Gilchuk P, Gray JJ, Zheng M, Niu X, Hildebrand W, Link AJ, Joyce S
(2015) Proteomics Clin Appl 9: 1035-52
MeSH Terms: Amino Acid Sequence, Antigen Presentation, Cell Line, Histocompatibility Antigens Class I, Humans, Molecular Sequence Data, Oncogenes, Peptides, Proteomics, Vaccinia virus
Show Abstract · Added February 15, 2016
PURPOSE - MHC class I presentation of peptides allows T cells to survey the cytoplasmic protein milieu of host cells. During infection, presentation of self peptides is, in part, replaced by presentation of microbial peptides. However, little is known about the self peptides presented during infection, despite the fact that microbial infections alter host cell gene expression patterns and protein metabolism.
EXPERIMENTAL DESIGN - The self peptide repertoire presented by HLA-A*01;01, HLA-A*02;01, HLA-B*07;02, HLA-B*35;01, and HLA-B*45;01 (where HLA is human leukocyte antigen) was determined by tandem MS before and after vaccinia virus infection.
RESULTS - We observed a profound alteration in the self peptide repertoire with hundreds of self peptides uniquely presented after infection for which we have coined the term "self peptidome shift." The fraction of novel self peptides presented following infection varied for different HLA class I molecules. A large part (approximately 40%) of the self peptidome shift arose from peptides derived from type I interferon-inducible genes, consistent with cellular responses to viral infection. Interestingly, approximately 12% of self peptides presented after infection showed allelic variation when searched against approximately 300 human genomes.
CONCLUSION AND CLINICAL RELEVANCE - Self peptidome shift in a clinical transplant setting could result in alloreactivity by presenting new self peptides in the context of infection-induced inflammation.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
0 Communities
2 Members
0 Resources
10 MeSH Terms
Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides.
McGirt LY, Jia P, Baerenwald DA, Duszynski RJ, Dahlman KB, Zic JA, Zwerner JP, Hucks D, Dave U, Zhao Z, Eischen CM
(2015) Blood 126: 508-19
MeSH Terms: Adult, Aged, Exome, Female, Follow-Up Studies, Genome, Human, High-Throughput Nucleotide Sequencing, Humans, Male, Middle Aged, Mutation, Mycosis Fungoides, Oncogenes, Retrospective Studies, Sequence Analysis, DNA, Skin Neoplasms, Ultraviolet Rays
Show Abstract · Added February 22, 2016
The pathogenesis of mycosis fungoides (MF), the most common cutaneous T-cell lymphoma (CTCL), is unknown. Although genetic alterations have been identified, none are considered consistently causative in MF. To identify potential drivers of MF, we performed whole-genome sequencing of MF tumors and matched normal skin. Targeted ultra-deep sequencing of MF samples and exome sequencing of CTCL cell lines were also performed. Multiple mutations were identified that affected the same pathways, including epigenetic, cell-fate regulation, and cytokine signaling, in MF tumors and CTCL cell lines. Specifically, interleukin-2 signaling pathway mutations, including activating Janus kinase 3 (JAK3) mutations, were detected. Treatment with a JAK3 inhibitor significantly reduced CTCL cell survival. Additionally, the mutation data identified 2 other potential contributing factors to MF, ultraviolet light, and a polymorphism in the tumor suppressor p53 (TP53). Therefore, genetic alterations in specific pathways in MF were identified that may be viable, effective new targets for treatment.
© 2015 by The American Society of Hematology.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Comprehensive genomic characterization of head and neck squamous cell carcinomas.
Cancer Genome Atlas Network
(2015) Nature 517: 576-82
MeSH Terms: Carcinoma, Squamous Cell, DNA Copy Number Variations, DNA, Neoplasm, Female, Gene Expression Regulation, Neoplastic, Genome, Human, Genomics, Head and Neck Neoplasms, Humans, Male, Molecular Targeted Therapy, Mutation, Oncogenes, RNA, Neoplasm, Signal Transduction, Squamous Cell Carcinoma of Head and Neck, Transcription Factors
Show Abstract · Added August 8, 2016
The Cancer Genome Atlas profiled 279 head and neck squamous cell carcinomas (HNSCCs) to provide a comprehensive landscape of somatic genomic alterations. Here we show that human-papillomavirus-associated tumours are dominated by helical domain mutations of the oncogene PIK3CA, novel alterations involving loss of TRAF3, and amplification of the cell cycle gene E2F1. Smoking-related HNSCCs demonstrate near universal loss-of-function TP53 mutations and CDKN2A inactivation with frequent copy number alterations including amplification of 3q26/28 and 11q13/22. A subgroup of oral cavity tumours with favourable clinical outcomes displayed infrequent copy number alterations in conjunction with activating mutations of HRAS or PIK3CA, coupled with inactivating mutations of CASP8, NOTCH1 and TP53. Other distinct subgroups contained loss-of-function alterations of the chromatin modifier NSD1, WNT pathway genes AJUBA and FAT1, and activation of oxidative stress factor NFE2L2, mainly in laryngeal tumours. Therapeutic candidate alterations were identified in most HNSCCs.
0 Communities
1 Members
0 Resources
17 MeSH Terms
CRISPR-Cas9 knockin mice for genome editing and cancer modeling.
Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng G, Sharp PA, Zhang F
(2014) Cell 159: 440-55
MeSH Terms: Adenocarcinoma, Animals, Clustered Regularly Interspaced Short Palindromic Repeats, Dendritic Cells, Disease Models, Animal, Gene Knock-In Techniques, Genes, Tumor Suppressor, Genetic Engineering, Genetic Vectors, Lentivirus, Lung Neoplasms, Mice, Mice, Transgenic, Oncogenes
Show Abstract · Added September 7, 2016
CRISPR-Cas9 is a versatile genome editing technology for studying the functions of genetic elements. To broadly enable the application of Cas9 in vivo, we established a Cre-dependent Cas9 knockin mouse. We demonstrated in vivo as well as ex vivo genome editing using adeno-associated virus (AAV)-, lentivirus-, or particle-mediated delivery of guide RNA in neurons, immune cells, and endothelial cells. Using these mice, we simultaneously modeled the dynamics of KRAS, p53, and LKB1, the top three significantly mutated genes in lung adenocarcinoma. Delivery of a single AAV vector in the lung generated loss-of-function mutations in p53 and Lkb1, as well as homology-directed repair-mediated Kras(G12D) mutations, leading to macroscopic tumors of adenocarcinoma pathology. Together, these results suggest that Cas9 mice empower a wide range of biological and disease modeling applications.
Copyright © 2014 Elsevier Inc. All rights reserved.
0 Communities
0 Members
0 Resources
14 MeSH Terms