Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 1146

Publication Record

Connections

Akt Signaling in Macrophage Polarization, Survival, and Atherosclerosis.
Linton MF, Moslehi JJ, Babaev VR
(2019) Int J Mol Sci 20:
MeSH Terms: Animals, Apoptosis, Atherosclerosis, Blood Cells, Cell Survival, Humans, Macrophage Activation, Macrophages, Phosphatidylinositol 3-Kinases, Protein Isoforms, Proto-Oncogene Proteins c-akt, Signal Transduction
Show Abstract · Added November 12, 2019
The PI3K/Akt pathway plays a crucial role in the survival, proliferation, and migration of macrophages, which may impact the development of atherosclerosis. Changes in Akt isoforms or modulation of the Akt activity levels in macrophages significantly affect their polarization phenotype and consequently atherosclerosis in mice. Moreover, the activity levels of Akt signaling determine the viability of monocytes/macrophages and their resistance to pro-apoptotic stimuli in atherosclerotic lesions. Therefore, elimination of pro-apoptotic factors as well as factors that antagonize or suppress Akt signaling in macrophages increases cell viability, protecting them from apoptosis, and this markedly accelerates atherosclerosis in mice. In contrast, inhibition of Akt signaling by the ablation of Rictor in myeloid cells, which disrupts mTORC2 assembly, significantly decreases the viability and proliferation of blood monocytes and macrophages with the suppression of atherosclerosis. In addition, monocytes and macrophages exhibit a threshold effect for Akt protein levels in their ability to survive. Ablation of two Akt isoforms, preserving only a single Akt isoform in myeloid cells, markedly compromises monocyte and macrophage viability, inducing monocytopenia and diminishing early atherosclerosis. These recent advances in our understanding of Akt signaling in macrophages in atherosclerosis may have significant relevance in the burgeoning field of cardio-oncology, where PI3K/Akt inhibitors being tested in cancer patients can have significant cardiovascular and metabolic ramifications.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Upregulated claudin-1 expression promotes colitis-associated cancer by promoting β-catenin phosphorylation and activation in Notch/p-AKT-dependent manner.
Gowrikumar S, Ahmad R, Uppada SB, Washington MK, Shi C, Singh AB, Dhawan P
(2019) Oncogene 38: 5321-5337
MeSH Terms: Animals, Biomarkers, Tumor, Cells, Cultured, Claudin-1, Colitis, Colonic Neoplasms, Gene Expression Regulation, Neoplastic, HT29 Cells, Humans, Inflammatory Bowel Diseases, Intestinal Mucosa, Mice, Mice, Inbred C57BL, Mice, Transgenic, Phosphorylation, Prognosis, Protein Processing, Post-Translational, Proto-Oncogene Proteins c-akt, Receptors, Notch, Signal Transduction, Up-Regulation, beta Catenin
Show Abstract · Added April 24, 2019
In IBD patients, integration between a hyper-activated immune system and epithelial cell plasticity underlies colon cancer development. However, molecular regulation of such a circuity remains undefined. Claudin-1 (Cld-1), a tight-junction integral protein deregulation alters colonic epithelial cell (CEC) differentiation, and promotes colitis severity while impairing colitis-associated injury/repair. Tumorigenesis is a product of an unregulated wound-healing process and therefore we postulated that upregulated Cld-1 levels render IBD patients susceptible to the colitis-associated cancer (CAC). Villin Cld-1 mice are used to carryout overexpressed studies in mice. The role of deregulated Cld-1 expression in CAC and the underlying mechanism was determined using a well-constructed study scheme and mouse models of DSS colitis/recovery and CAC. Using an inclusive investigative scheme, we here report that upregulated Cld-1 expression promotes susceptibility to the CAC and its malignancy. Increased mucosal inflammation and defective epithelial homeostasis accompanied the increased CAC in Villin-Cld-1-Tg mice. We further found significantly increased levels of protumorigenic M2 macrophages and β-cateninSer552 (β-CatSer552) expression in the CAC in Cld-1Tg vs. WT mice. Mechanistic studies identified the role of PI3K/Akt signaling in Cld-1-dependent activation of the β-CatSer552, which, in turn, was dependent on proinflammatory signals. Our studies identify a critical role of Cld-1 in promoting susceptibility to CAC. Importantly, these effects of deregulated Cld-1 were not associated with altered tight junction integrity, but on its noncanonical role in regulating Notch/PI3K/Wnt/ β-CatSer552 signaling. Overall, outcome from our current studies identifies Cld-1 as potential prognostic biomarker for IBD severity and CAC, and a novel therapeutic target.
1 Communities
0 Members
0 Resources
22 MeSH Terms
Repurposing cabozantinib to GISTs: Overcoming multiple imatinib-resistant cKIT mutations including gatekeeper and activation loop mutants in GISTs preclinical models.
Lu T, Chen C, Wang A, Jiang Z, Qi Z, Hu Z, Hu C, Liu F, Wang W, Wu H, Wang B, Wang L, Qi S, Wu J, Wang W, Tang J, Yan H, Bai M, Liu Q, Liu J
(2019) Cancer Lett 447: 105-114
MeSH Terms: Anilides, Antineoplastic Agents, Cell Line, Tumor, Drug Repositioning, Drug Resistance, Neoplasm, Gastrointestinal Stromal Tumors, Humans, Imatinib Mesylate, Mutation, Proto-Oncogene Proteins c-kit, Pyridines
Show Abstract · Added April 2, 2019
Despite of the great success of imatinib as the first-line treatment for GISTs, the majority of patients will develop drug-acquired resistance due to secondary mutations in the cKIT kinase. Sunitinib and regorafenib have been approved as the second and third line therapies to overcome some of these drug-resistance mutations; however, their limited clinical response, toxicity and resistance of the activation loop mutants still makes new therapies bearing different cKIT mutants activity spectrum profile highly demanded. Through a drug repositioning approach, we found that cabozantinib exhibited higher potency than imatinib against primary gain-of-function mutations of cKIT. Moreover, cabozantinib was able to overcome cKIT gatekeeper T670I mutation and the activation loop mutations that are resistant to imatinib or sunitinib. Cabozantinib demonstrated good efficacy in vitro and in vivo in the cKIT mutant-driven preclinical models of GISTs while displaying a long-lasting effect after treatment withdrawal. Furthermore, it also exhibited dose-dependent anti-proliferative efficacy in the GIST patient derived primary cells. Considering clinical safety and PK profile of cabozantinib, this report provides the basis for the future clinical applications of cabozantinib as an alternative anti-GISTs therapy in precision medicine.
Copyright © 2019 Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Active Kras Expression in Gastric Isthmal Progenitor Cells Induces Foveolar Hyperplasia but Not Metaplasia.
Choi E, Means AL, Coffey RJ, Goldenring JR
(2019) Cell Mol Gastroenterol Hepatol 7: 251-253.e1
MeSH Terms: Animals, Biomarkers, Humans, Hyperplasia, Metaplasia, Mice, Proto-Oncogene Proteins p21(ras), Stem Cells, Stomach
Added February 7, 2019
1 Communities
0 Members
0 Resources
9 MeSH Terms
Loss of 2 Akt (Protein Kinase B) Isoforms in Hematopoietic Cells Diminished Monocyte and Macrophage Survival and Reduces Atherosclerosis in Ldl Receptor-Null Mice.
Babaev VR, Ding L, Zhang Y, May JM, Ramsey SA, Vickers KC, Linton MF
(2019) Arterioscler Thromb Vasc Biol 39: 156-169
MeSH Terms: Animals, Atherosclerosis, Cell Survival, Female, Hematopoietic System, Macrophages, Male, Mice, Mice, Inbred C57BL, Monocytes, Protein Isoforms, Proto-Oncogene Proteins c-akt, Receptors, LDL
Show Abstract · Added April 10, 2019
Objective- Macrophages express 3 Akt (protein kinase B) isoforms, Akt1, Akt2, and Akt3, which display isoform-specific functions but may be redundant in terms of Akt survival signaling. We hypothesize that loss of 2 Akt isoforms in macrophages will suppress their ability to survive and modulate the development of atherosclerosis. Approach and Results- To test this hypothesis, we reconstituted male Ldlr mice with double Akt2/Akt3 knockout hematopoietic cells expressing only the Akt1 isoform (Akt1). There were no differences in body weight and plasma lipid levels between the groups after 8 weeks of the Western diet; however, Akt1→ Ldlr mice developed smaller (57.6% reduction) atherosclerotic lesions with more apoptotic macrophages than control mice transplanted with WT (wild type) cells. Next, male and female Ldlr mice were reconstituted with double Akt1/Akt2 knockout hematopoietic cells expressing the Akt3 isoform (Akt3). Female and male Akt3→ Ldlr recipients had significantly smaller (61% and 41%, respectively) lesions than the control WT→ Ldlr mice. Loss of 2 Akt isoforms in hematopoietic cells resulted in markedly diminished levels of white blood cells, B cells, and monocytes and compromised viability of monocytes and peritoneal macrophages compared with WT cells. In response to lipopolysaccharides, macrophages with a single Akt isoform expressed low levels of inflammatory cytokines; however, Akt1 macrophages were distinct in expressing high levels of antiapoptotic Il10 compared with WT and Akt3 cells. Conclusions- Loss of 2 Akt isoforms in hematopoietic cells, preserving only a single Akt1 or Akt3 isoform, markedly compromises monocyte and macrophage viability and diminishes early atherosclerosis in Ldlr mice.
0 Communities
1 Members
0 Resources
13 MeSH Terms
SIRT2 knockout exacerbates insulin resistance in high fat-fed mice.
Lantier L, Williams AS, Hughey CC, Bracy DP, James FD, Ansari MA, Gius D, Wasserman DH
(2018) PLoS One 13: e0208634
MeSH Terms: Acetylation, Animals, Diet, High-Fat, Energy Metabolism, Insulin, Insulin Resistance, Liver, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Mitochondria, Muscle, Skeletal, Phosphorylation, Proto-Oncogene Proteins c-akt, Sirtuin 2
Show Abstract · Added January 8, 2019
The NAD+-dependent deacetylase SIRT2 is unique amongst sirtuins as it is effective in the cytosol, as well as the mitochondria. Defining the role of cytosolic acetylation state in specific tissues is difficult since even physiological effects at the whole body level are unknown. We hypothesized that genetic SIRT2 knockout (KO) would lead to impaired insulin action, and that this impairment would be worsened in HF fed mice. Insulin sensitivity was tested using the hyperinsulinemic-euglycemic clamp in SIRT2 KO mice and WT littermates. SIRT2 KO mice exhibited reduced skeletal muscle insulin-induced glucose uptake compared to lean WT mice, and this impairment was exacerbated in HF SIRT2 KO mice. Liver insulin sensitivity was unaffected in lean SIRT2 KO mice. However, the insulin resistance that accompanies HF-feeding was worsened in SIRT2 KO mice. It was notable that the effects of SIRT2 KO were largely disassociated from cytosolic acetylation state, but were closely linked to acetylation state in the mitochondria. SIRT2 KO led to an increase in body weight that was due to increased food intake in HF fed mice. In summary, SIRT2 deletion in vivo reduces muscle insulin sensitivity and contributes to liver insulin resistance by a mechanism that is unrelated to cytosolic acetylation state. Mitochondrial acetylation state and changes in feeding behavior that result in increased body weight correspond to the deleterious effects of SIRT2 KO on insulin action.
2 Communities
1 Members
0 Resources
16 MeSH Terms
AXL Mediates Esophageal Adenocarcinoma Cell Invasion through Regulation of Extracellular Acidification and Lysosome Trafficking.
Maacha S, Hong J, von Lersner A, Zijlstra A, Belkhiri A
(2018) Neoplasia 20: 1008-1022
MeSH Terms: Adenocarcinoma, Animals, Benzocycloheptenes, Biological Transport, Cathepsin B, Cell Line, Tumor, Chick Embryo, Chorioallantoic Membrane, Epithelial-Mesenchymal Transition, Esophageal Neoplasms, Gene Expression Regulation, Neoplastic, Humans, Hydrogen-Ion Concentration, Lactates, Lysosomes, Monocarboxylic Acid Transporters, Proto-Oncogene Proteins, Receptor Protein-Tyrosine Kinases, Symporters, Triazoles
Show Abstract · Added April 10, 2019
Esophageal adenocarcinoma (EAC) is a highly aggressive malignancy that is characterized by resistance to chemotherapy and a poor clinical outcome. The overexpression of the receptor tyrosine kinase AXL is frequently associated with unfavorable prognosis in EAC. Although it is well documented that AXL mediates cancer cell invasion as a downstream effector of epithelial-to-mesenchymal transition, the precise molecular mechanism underlying this process is not completely understood. Herein, we demonstrate for the first time that AXL mediates cell invasion through the regulation of lysosomes peripheral distribution and cathepsin B secretion in EAC cell lines. Furthermore, we show that AXL-dependent peripheral distribution of lysosomes and cell invasion are mediated by extracellular acidification, which is potentiated by AXL-induced secretion of lactate through AKT-NF-κB-dependent MCT-1 regulation. Our novel mechanistic findings support future clinical studies to evaluate the therapeutic potential of the AXL inhibitor R428 (BGB324) in highly invasive EAC.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Dorsal BNST α-Adrenergic Receptors Produce HCN-Dependent Excitatory Actions That Initiate Anxiogenic Behaviors.
Harris NA, Isaac AT, Günther A, Merkel K, Melchior J, Xu M, Eguakun E, Perez R, Nabit BP, Flavin S, Gilsbach R, Shonesy B, Hein L, Abel T, Baumann A, Matthews R, Centanni SW, Winder DG
(2018) J Neurosci 38: 8922-8942
MeSH Terms: Adrenergic alpha-2 Receptor Agonists, Animals, Anxiety, Catecholamines, Female, Guanfacine, Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels, Male, Mice, Inbred C57BL, Mice, Transgenic, Neurons, Proto-Oncogene Proteins c-fos, Receptors, Adrenergic, alpha-2, Septal Nuclei, Stress, Psychological
Show Abstract · Added March 26, 2019
Stress is a precipitating agent in neuropsychiatric disease and initiates relapse to drug-seeking behavior in addicted patients. Targeting the stress system in protracted abstinence from drugs of abuse with anxiolytics may be an effective treatment modality for substance use disorders. α-adrenergic receptors (α-ARs) in extended amygdala structures play key roles in dampening stress responses. Contrary to early thinking, α-ARs are expressed at non-noradrenergic sites in the brain. These non-noradrenergic α-ARs play important roles in stress responses, but their cellular mechanisms of action are unclear. In humans, the α-AR agonist guanfacine reduces overall craving and uncouples craving from stress, yet minimally affects relapse, potentially due to competing actions in the brain. Here, we show that heteroceptor α-ARs postsynaptically enhance dorsal bed nucleus of the stria terminalis (dBNST) neuronal activity in mice of both sexes. This effect is mediated by hyperpolarization-activated cyclic nucleotide-gated cation channels because inhibition of these channels is necessary and sufficient for excitatory actions. Finally, this excitatory action is mimicked by clozapine--oxide activation of the G-coupled DREADD hM4Di in dBNST neurons and its activation elicits anxiety-like behavior in the elevated plus maze. Together, these data provide a framework for elucidating cell-specific actions of GPCR signaling and provide a potential mechanism whereby competing anxiogenic and anxiolytic actions of guanfacine may affect its clinical utility in the treatment of addiction. Stress affects the development of neuropsychiatric disorders including anxiety and addiction. Guanfacine is an α2A-adrenergic receptor (α2A-AR) agonist with actions in the bed nucleus of the stria terminalis (BNST) that produces antidepressant actions and uncouples stress from reward-related behaviors. Here, we show that guanfacine increases dorsal BNST neuronal activity through actions at postsynaptic α2A-ARs via a mechanism that involves hyperpolarization-activated cyclic nucleotide gated cation channels. This action is mimicked by activation of the designer receptor hM4Di expressed in the BNST, which also induces anxiety-like behaviors. Together, these data suggest that postsynaptic α2A-ARs in BNST have excitatory actions on BNST neurons and that these actions can be phenocopied by the so-called "inhibitory" DREADDs, suggesting that care must be taken regarding interpretation of data obtained with these tools.
Copyright © 2018 the authors 0270-6474/18/388923-21$15.00/0.
0 Communities
1 Members
0 Resources
15 MeSH Terms
The proto-oncogene function of Mdm2 in bone.
Olivos DJ, Perrien DS, Hooker A, Cheng YH, Fuchs RK, Hong JM, Bruzzaniti A, Chun K, Eischen CM, Kacena MA, Mayo LD
(2018) J Cell Biochem 119: 8830-8840
MeSH Terms: Analysis of Variance, Animals, Bone Density, Bone Remodeling, Calcification, Physiologic, Cancellous Bone, Cell Line, Tumor, Female, Humans, Male, Mice, Mice, Inbred C57BL, Mice, Inbred DBA, Osteoblasts, Osteoclasts, Osteogenesis, Osteosarcoma, Proto-Oncogene Proteins c-mdm2, Proto-Oncogenes
Show Abstract · Added April 1, 2019
Mouse double minute 2 (Mdm2) is a multifaceted oncoprotein that is highly regulated with distinct domains capable of cellular transformation. Loss of Mdm2 is embryonically lethal, making it difficult to study in a mouse model without additional genetic alterations. Global overexpression through increased Mdm2 gene copy number (Mdm2 ) results in the development of hematopoietic neoplasms and sarcomas in adult animals. In these mice, we found an increase in osteoblastogenesis, differentiation, and a high bone mass phenotype. Since it was difficult to discern the cell lineage that generated this phenotype, we generated osteoblast-specific Mdm2 overexpressing (Mdm2 ) mice in 2 different strains, C57BL/6 and DBA. These mice did not develop malignancies; however, these animals and the MG63 human osteosarcoma cell line with high levels of Mdm2 showed an increase in bone mineralization. Importantly, overexpression of Mdm2 corrected age-related bone loss in mice, providing a role for the proto-oncogenic activity of Mdm2 in bone health of adult animals.
© 2018 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
19 MeSH Terms
A potential therapeutic role for angiotensin-converting enzyme 2 in human pulmonary arterial hypertension.
Hemnes AR, Rathinasabapathy A, Austin EA, Brittain EL, Carrier EJ, Chen X, Fessel JP, Fike CD, Fong P, Fortune N, Gerszten RE, Johnson JA, Kaplowitz M, Newman JH, Piana R, Pugh ME, Rice TW, Robbins IM, Wheeler L, Yu C, Loyd JE, West J
(2018) Eur Respir J 51:
MeSH Terms: Adult, Aged, Animals, Biomarkers, Cytokines, Female, Gene Expression, Humans, Hypertension, Pulmonary, Male, Middle Aged, Peptidyl-Dipeptidase A, Pilot Projects, Proof of Concept Study, Proto-Oncogene Proteins, Pulmonary Artery, Receptors, G-Protein-Coupled, Superoxide Dismutase, Swine, Vascular Resistance
Show Abstract · Added March 26, 2019
Pulmonary arterial hypertension (PAH) is a deadly disease with no cure. Alternate conversion of angiotensin II (AngII) to angiotensin-(1-7) (Ang-(1-7)) by angiotensin-converting enzyme 2 (ACE2) resulting in Mas receptor (Mas1) activation improves rodent models of PAH. Effects of recombinant human (rh) ACE2 in human PAH are unknown. Our objective was to determine the effects of rhACE2 in PAH.We defined the molecular effects of Mas1 activation using porcine pulmonary arteries, measured AngII/Ang-(1-7) levels in human PAH and conducted a phase IIa, open-label pilot study of a single infusion of rhACE2 (GSK2586881, 0.2 or 0.4 mg·kg intravenously).Superoxide dismutase 2 (SOD2) and inflammatory gene expression were identified as markers of Mas1 activation. After confirming reduced plasma ACE2 activity in human PAH, five patients were enrolled in the trial. GSK2586881 was well tolerated with significant improvement in cardiac output and pulmonary vascular resistance. GSK2586881 infusion was associated with reduced plasma markers of inflammation within 2-4 h and increased SOD2 plasma protein at 2 weeks.PAH is characterised by reduced ACE2 activity. Augmentation of ACE2 in a pilot study was well tolerated, associated with improved pulmonary haemodynamics and reduced markers of oxidant and inflammatory mediators. Targeting this pathway may be beneficial in human PAH.
Copyright ©ERS 2018.
0 Communities
2 Members
0 Resources
20 MeSH Terms