Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 101

Publication Record

Connections

Synthesis of the Siderophore Coelichelin and Its Utility as a Probe in the Study of Bacterial Metal Sensing and Response.
Williams JC, Sheldon JR, Imlay HD, Dutter BF, Draelos MM, Skaar EP, Sulikowski GA
(2019) Org Lett 21: 679-682
MeSH Terms: Iron, Molecular Probes, Oligopeptides, Pseudomonas aeruginosa, Siderophores
Show Abstract · Added April 7, 2019
A convergent total synthesis of the siderophore coelichelin is described. The synthetic route also provided access to acetyl coelichelin and other congeners of the parent siderophore. The synthetic products were evaluated for their ability to bind ferric iron and promote growth of a siderophore-deficient strain of the Gram-negative bacterium Pseudomonas aeruginosa under iron restriction conditions. The results of these studies indicate coelichelin and several derivatives serve as ferric iron delivery vehicles for P. aeruginosa.
0 Communities
1 Members
0 Resources
MeSH Terms
Hotspots of age-related protein degradation: the importance of neighboring residues for the formation of non-disulfide crosslinks derived from cysteine.
Friedrich MG, Wang Z, Oakley AJ, Schey KL, Truscott RJW
(2017) Biochem J 474: 2475-2487
MeSH Terms: Age Factors, Alanine, Cysteine, Databases, Protein, Disulfides, Eye Proteins, Humans, Lens, Crystalline, Models, Molecular, Oligopeptides, Proteolysis, Tandem Mass Spectrometry, beta-Crystallin A Chain
Show Abstract · Added April 3, 2018
Over time, the long-lived proteins that are present throughout the human body deteriorate. Typically, they become racemized, truncated, and covalently cross-linked. One reaction responsible for age-related protein cross-linking in the lens was elucidated recently and shown to involve spontaneous formation of dehydroalanine (DHA) intermediates from phosphoserine. Cys residues are another potential source of DHA, and evidence for this was found in many lens crystallins. In the human lens, some sites were more prone to forming non-disulfide covalent cross-links than others. Foremost among them was Cys5 in βA4 crystallin. The reason for this enhanced reactivity was investigated using peptides. Oxidation of Cys to cystine was a prerequisite for DHA formation, and DHA production was accelerated markedly by the presence of a Lys, one residue separated from Cys5. Modeling and direct investigation of the N-terminal sequence of βA4 crystallin, as well as a variety of homologous peptides, showed that the epsilon amino group of Lys can promote DHA production by nucleophilic attack on the alpha proton of cystine. Once a DHA residue was generated, it could form intermolecular cross-links with Lys and Cys. In the lens, the most abundant cross-link involved Cys5 of βA4 crystallin attached via a thioether bond to glutathione. These findings illustrate the potential of Cys and disulfide bonds to act as precursors for irreversible covalent cross-links and the role of nearby amino acids in creating 'hotpsots' for the spontaneous processes responsible for protein degradation in aged tissues.
© 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
0 Communities
1 Members
0 Resources
MeSH Terms
Specificity of Protein Covalent Modification by the Electrophilic Proteasome Inhibitor Carfilzomib in Human Cells.
Federspiel JD, Codreanu SG, Goyal S, Albertolle ME, Lowe E, Teague J, Wong H, Guengerich FP, Liebler DC
(2016) Mol Cell Proteomics 15: 3233-3242
MeSH Terms: Cell Line, Tumor, Cholestanetriol 26-Monooxygenase, Click Chemistry, Glutathione Transferase, Hep G2 Cells, Humans, Molecular Structure, Oligopeptides, Proteasome Inhibitors, Tandem Mass Spectrometry
Show Abstract · Added March 14, 2018
Carfilzomib (CFZ) is a second-generation proteasome inhibitor that is Food and Drug Administration and European Commission approved for the treatment of relapsed or refractory multiple myeloma. CFZ is an epoxomicin derivative with an epoxyketone electrophilic warhead that irreversibly adducts the catalytic threonine residue of the β5 subunit of the proteasome. Although CFZ produces a highly potent, sustained inactivation of the proteasome, the electrophilic nature of the drug could potentially produce off-target protein adduction. To address this possibility, we synthesized an alkynyl analog of CFZ and investigated protein adduction by this analog in HepG2 cells. Using click chemistry coupled with streptavidin based IP and shotgun tandem mass spectrometry (MS/MS), we identified two off-target proteins, cytochrome P450 27A1 (CYP27A1) and glutathione S-transferase omega 1 (GSTO1), as targets of the alkynyl CFZ probe. We confirmed the adduction of CYP27A1 and GSTO1 by streptavidin capture and immunoblotting methodology and then site-specifically mapped the adducts with targeted MS/MS methods. Although CFZ adduction of CYP27A1 and GSTO1 in vitro decreased the activities of these enzymes, the small fraction of these proteins modified by CFZ in intact cells should limit the impact of these off-target modifications. The data support the high selectivity of CFZ for covalent modification of its therapeutic targets, despite the presence of a reactive electrophile. The approach we describe offers a generalizable method to evaluate the safety profile of covalent protein-modifying therapeutics.
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Endosomolytic Nano-Polyplex Platform Technology for Cytosolic Peptide Delivery To Inhibit Pathological Vasoconstriction.
Evans BC, Hocking KM, Kilchrist KV, Wise ES, Brophy CM, Duvall CL
(2015) ACS Nano 9: 5893-907
MeSH Terms: Cells, Cultured, Coronary Vasospasm, Cytosol, Drug Delivery Systems, Humans, Muscle, Smooth, Vascular, Nanostructures, Nanotechnology, Oligopeptides, Polymers, Vasoconstriction
Show Abstract · Added March 14, 2018
A platform technology has been developed and tested for delivery of intracellular-acting peptides through electrostatically complexed nanoparticles, or nano-polyplexes, formulated from an anionic endosomolytic polymer and cationic therapeutic peptides. This delivery platform has been initially tested and optimized for delivery of two unique vasoactive peptides, a phosphomimetic of heat shock protein 20 and an inhibitor of MAPKAP kinase II, to prevent pathological vasoconstriction (i.e., vasospasm) in human vascular tissue. These peptides inhibit vasoconstriction and promote vasorelaxation by modulating actin dynamics in vascular smooth muscle cells. Formulating these peptides into nano-polyplexes significantly enhances peptide uptake and retention, facilitates cytosolic delivery through a pH-dependent endosomal escape mechanism, and enhances peptide bioactivity in vitro as measured by inhibition of F-actin stress fiber formation. In comparison to treatment with the free peptides, which were endowed with cell-penetrating sequences, the nano-polyplexes significantly increased vasorelaxation, inhibited vasoconstriction, and decreased F-actin formation in the human saphenous vein ex vivo. These results suggest that these formulations have significant potential for treatment of conditions such as cerebral vasospasm following subarachnoid hemorrhage. Furthermore, because many therapeutic peptides include cationic cell-penetrating segments, this simple and modular platform technology may have broad applicability as a cost-effective approach for enhancing the efficacy of cytosolically active peptides.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Phage-display-guided nanocarrier targeting to atheroprone vasculature.
Hofmeister LH, Lee SH, Norlander AE, Montaniel KR, Chen W, Harrison DG, Sung HJ
(2015) ACS Nano 9: 4435-46
MeSH Terms: Amino Acid Sequence, Animals, Apolipoproteins E, Atherosclerosis, Biopterin, Carotid Arteries, Disease Susceptibility, Drug Carriers, Male, Mice, Molecular Sequence Data, Nanomedicine, Nanostructures, Oligopeptides, Peptide Library
Show Abstract · Added March 31, 2015
In regions of the circulation where vessels are straight and unbranched, blood flow is laminar and unidirectional. In contrast, at sites of curvature, branch points, and regions distal to stenoses, blood flow becomes disturbed. Atherosclerosis preferentially develops in these regions of disturbed blood flow. Current therapies for atherosclerosis are systemic and may not sufficiently target these atheroprone regions. In this study, we sought to leverage the alterations on the luminal surface of endothelial cells caused by this atheroprone flow for nanocarrier targeting. In vivo phage display was used to discover unique peptides that selectively bind to atheroprone regions in the mouse partial carotid artery ligation model. The peptide GSPREYTSYMPH (PREY) was found to bind 4.5-fold more avidly to the region of disturbed flow and was used to form targeted liposomes. When administered intravenously, PREY-targeted liposomes preferentially accumulated in endothelial cells in the partially occluded carotid artery and other areas of disturbed flow. Proteomic analysis and immunoblotting indicated that fibronectin and Filamin-A were preferentially bound by PREY nanocarriers in vessels with disturbed flow. In additional experiments, PREY nanocarriers were used therapeutically to deliver the nitric oxide synthase cofactor tetrahydrobiopterin (BH4), which we have previously shown to be deficient in regions of disturbed flow. This intervention increased vascular BH4 and reduced vascular superoxide in the partially ligated artery in wild-type mice and reduced plaque burden in the partially ligated left carotid artery of fat fed atheroprone mice (ApoE(-/-)). Targeting atheroprone sites of the circulation with functionalized nanocarriers provides a promising approach for prevention of early atherosclerotic lesion formation.
1 Communities
1 Members
0 Resources
15 MeSH Terms
Ion/ion reactions with "onium" reagents: an approach for the gas-phase transfer of organic cations to multiply-charged anions.
Gilbert JD, Prentice BM, McLuckey SA
(2015) J Am Soc Mass Spectrom 26: 818-25
MeSH Terms: Alkylation, CME-Carbodiimide, Catalysis, Chelating Agents, Cross-Linking Reagents, Edetic Acid, Energy Transfer, Hot Temperature, Indicators and Reagents, Models, Molecular, Oligopeptides, Organophosphorus Compounds, Protein Conformation, Quaternary Ammonium Compounds, Spectrometry, Mass, Electrospray Ionization, Static Electricity, Sulfonium Compounds, Tandem Mass Spectrometry, Tetraethylammonium, Volatilization
Show Abstract · Added August 17, 2016
The use of ion/ion reactions to effect gas-phase alkylation is demonstrated. Commonly used fixed-charge "onium" cations are well-suited for ion/ion reactions with multiply deprotonated analytes because of their tendency to form long-lived electrostatic complexes. Activation of these complexes results in an SN2 reaction that yields an alkylated anion with the loss of a neutral remnant of the reagent. This alkylation process forms the basis of a general method for alkylation of deprotonated analytes generated via electrospray, and is demonstrated on a variety of anionic sites. SN2 reactions of this nature are demonstrated empirically and characterized using density functional theory (DFT). This method for modification in the gas phase is extended to the transfer of larger and more complex R groups that can be used in later gas-phase synthesis steps. For example, N-cyclohexyl-N'-(2-morpholinoethyl)carbodiimide (CMC) is used to transfer a carbodiimide functionality to a peptide anion containing a carboxylic acid. Subsequent activation yields a selective reaction between the transferred carbodiimide group and a carboxylic acid, suggesting the carbodiimide functionality is retained through the transfer process. Many different R groups are transferable using this method, allowing for new possibilities for charge manipulation and derivatization in the gas phase.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Efficacy and tolerability of 3 nonnucleoside reverse transcriptase inhibitor-sparing antiretroviral regimens for treatment-naive volunteers infected with HIV-1: a randomized, controlled equivalence trial.
Lennox JL, Landovitz RJ, Ribaudo HJ, Ofotokun I, Na LH, Godfrey C, Kuritzkes DR, Sagar M, Brown TT, Cohn SE, McComsey GA, Aweeka F, Fichtenbaum CJ, Presti RM, Koletar SL, Haas DW, Patterson KB, Benson CA, Baugh BP, Leavitt RY, Rooney JF, Seekins D, Currier JS, ACTG A5257 Team
(2014) Ann Intern Med 161: 461-71
MeSH Terms: Adenine, Adult, Atazanavir Sulfate, Darunavir, Deoxycytidine, Drug Combinations, Drug Therapy, Combination, Emtricitabine, Female, HIV Infections, HIV Protease Inhibitors, HIV-1, Humans, Male, Oligopeptides, Organophosphonates, Pyridines, RNA, Viral, Reverse Transcriptase Inhibitors, Sulfonamides, Tenofovir, Therapeutic Equivalency, Viral Load
Show Abstract · Added March 13, 2015
BACKGROUND - Nonnucleoside reverse transcriptase inhibitor-based antiretroviral therapy is not suitable for all treatment-naive HIV-infected persons.
OBJECTIVE - To evaluate 3 nonnucleoside reverse transcriptase inhibitor-sparing initial antiretroviral regimens to show equivalence for virologic efficacy and tolerability.
DESIGN - A phase 3, open-label study randomized in a 1:1:1 ratio with follow-up for at least 96 weeks. (ClinicalTrials.gov: NCT00811954).
SETTING - 57 sites in the United States and Puerto Rico.
PATIENTS - Treatment-naive persons aged 18 years or older with HIV-1 RNA levels greater than 1000 copies/mL without resistance to nucleoside reverse transcriptase inhibitors or protease inhibitors.
INTERVENTION - Atazanavir, 300 mg/d, with ritonavir, 100 mg/d; raltegravir, 400 mg twice daily; or darunavir, 800 mg/d, with ritonavir, 100 mg/d, plus combination emtricitabine, 200 mg/d, and tenofovir disoproxil fumarate, 300 mg/d.
MEASUREMENTS - Virologic failure, defined as a confirmed HIV-1 RNA level greater than 1000 copies/mL at or after 16 weeks and before 24 weeks or greater than 200 copies/mL at or after 24 weeks, and tolerability failure, defined as discontinuation of atazanavir, raltegravir, or darunavir for toxicity. A secondary end point was a combination of virologic efficacy and tolerability.
RESULTS - Among 1809 participants, all pairwise comparisons of incidence of virologic failure over 96 weeks showed equivalence within a margin of equivalence defined as -10% to 10%. Raltegravir and ritonavir-boosted darunavir were equivalent for tolerability, whereas ritonavir-boosted atazanavir resulted in a 12.7% and 9.2% higher incidence of tolerability discontinuation than raltegravir and ritonavir-boosted darunavir, respectively, primarily because of hyperbilirubinemia. For combined virologic efficacy and tolerability, ritonavir-boosted darunavir was superior to ritonavir-boosted atazanavir, and raltegravir was superior to both protease inhibitors. Antiretroviral resistance at the time of virologic failure was rare but more frequent with raltegravir.
LIMITATION - The trial was open-label, and ritonavir was not provided.
CONCLUSION - Over 2 years, all 3 regimens attained high and equivalent rates of virologic control. Tolerability of regimens containing raltegravir or ritonavir-boosted darunavir was superior to that of the ritonavir-boosted atazanavir regimen.
PRIMARY FUNDING SOURCE - National Institute of Allergy and Infectious Diseases.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Uncoupling angiogenesis and inflammation in peripheral artery disease with therapeutic peptide-loaded microgels.
Zachman AL, Wang X, Tucker-Schwartz JM, Fitzpatrick ST, Lee SH, Guelcher SA, Skala MC, Sung HJ
(2014) Biomaterials 35: 9635-48
MeSH Terms: Angiogenesis Inducing Agents, Animals, Anti-Inflammatory Agents, Cell Line, Drug Carriers, Human Umbilical Vein Endothelial Cells, Inflammation, Injections, Matrix Metalloproteinase 9, Matrix Metalloproteinase Inhibitors, Mice, Neovascularization, Physiologic, Oligopeptides, Peripheral Arterial Disease, Polyesters, Tumor Necrosis Factor-alpha
Show Abstract · Added October 30, 2014
Peripheral artery disease (PAD) is characterized by vessel occlusion and ischemia in the limbs. Treatment for PAD with surgical interventions has been showing limited success. Moreover, recent clinical trials with treatment of angiogenic growth factors proved ineffective as increased angiogenesis triggered severe inflammation in a proportionally coupled fashion. Hence, the overarching goal of this research was to address this issue by developing a biomaterial system that enables controlled, dual delivery of pro-angiogenic C16 and anti-inflammatory Ac-SDKP peptides in a minimally-invasive way. To achieve the goal, a peptide-loaded injectable microgel system was developed and tested in a mouse model of PAD. When delivered through multiple, low volume injections, the combination of C16 and Ac-SDKP peptides promoted angiogenesis, muscle regeneration, and perfusion recovery, while minimizing detrimental inflammation. Additionally, this peptide combination regulated inflammatory TNF-α pathways independently of MMP-9 mediated pathways of angiogenesis in vitro, suggesting a potential mechanism by which angiogenic and inflammatory responses can be uncoupled in the context of PAD. This study demonstrates a translatable potential of the dual peptide-loaded injectable microgel system for PAD treatment.
Copyright © 2014 Elsevier Ltd. All rights reserved.
1 Communities
3 Members
0 Resources
16 MeSH Terms
The challenge of cross-trial comparisons using limited data.
Laubach JP, Faber EA, Voorhees P, Moslehi J, Varga C, Niculescu L, Anderson KC, Richardson PG
(2014) Haematologica 99: e145-6
MeSH Terms: Female, Humans, Male, Multiple Myeloma, Oligopeptides, Proteasome Inhibitors
Added March 4, 2015
0 Communities
1 Members
0 Resources
6 MeSH Terms
Genomewide association study of atazanavir pharmacokinetics and hyperbilirubinemia in AIDS Clinical Trials Group protocol A5202.
Johnson DH, Venuto C, Ritchie MD, Morse GD, Daar ES, McLaren PJ, Haas DW
(2014) Pharmacogenet Genomics 24: 195-203
MeSH Terms: Acquired Immunodeficiency Syndrome, Adult, Antiretroviral Therapy, Highly Active, Atazanavir Sulfate, Bilirubin, Female, Genome-Wide Association Study, Glucuronosyltransferase, HIV Protease Inhibitors, Humans, Hyperbilirubinemia, Male, Middle Aged, Multivariate Analysis, Oligopeptides, Polymorphism, Single Nucleotide, Prospective Studies, Pyridines, Ritonavir
Show Abstract · Added March 13, 2015
BACKGROUND - Atazanavir-associated hyperbilirubinemia can cause premature discontinuation of atazanavir and avoidance of its initial prescription. We used genomewide genotyping and clinical data to characterize determinants of atazanavir pharmacokinetics and hyperbilirubinemia in AIDS Clinical Trials Group protocol A5202.
METHODS - Plasma atazanavir pharmacokinetics and indirect bilirubin concentrations were characterized in HIV-1-infected patients randomized to atazanavir/ritonavir-containing regimens. A subset had genomewide genotype data available.
RESULTS - Genomewide assay data were available from 542 participants, of whom 475 also had data on estimated atazanavir clearance and relevant covariates available. Peak bilirubin concentration and relevant covariates were available for 443 participants. By multivariate analysis, higher peak on-treatment bilirubin levels were found to be associated with the UGT1A1 rs887829 T allele (P=6.4×10(-12)), higher baseline hemoglobin levels (P=4.9×10(-13)), higher baseline bilirubin levels (P=6.7×10(-12)), and slower plasma atazanavir clearance (P=8.6×10(-11)). For peak bilirubin levels greater than 3.0 mg/dl, the positive predictive value of a baseline bilirubin level of 0.5 mg/dl or higher with hemoglobin concentrations of 14 g/dl or higher was 0.51, which increased to 0.85 with rs887829 TT homozygosity. For peak bilirubin levels of 3.0 mg/dl or lower, the positive predictive value of a baseline bilirubin level less than 0.5 mg/dl with a hemoglobin concentration less than 14 g/dl was 0.91, which increased to 0.96 with rs887829 CC homozygosity. No polymorphism predicted atazanavir pharmacokinetics at genomewide significance.
CONCLUSION - Atazanavir-associated hyperbilirubinemia is best predicted by considering UGT1A1 genotype, baseline bilirubin level, and baseline hemoglobin level in combination. Use of ritonavir as a pharmacokinetic enhancer may have abrogated genetic associations with atazanavir pharmacokinetics.
0 Communities
1 Members
0 Resources
19 MeSH Terms