Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 128

Publication Record

Connections

Targeted Imaging of VCAM-1 mRNA in a Mouse Model of Laser-Induced Choroidal Neovascularization Using Antisense Hairpin-DNA-Functionalized Gold-Nanoparticles.
Uddin MI, Kilburn TC, Yang R, McCollum GW, Wright DW, Penn JS
(2018) Mol Pharm 15: 5514-5520
MeSH Terms: Animals, Biomarkers, Choroid, Choroidal Neovascularization, Disease Models, Animal, Fluorescent Dyes, Gold, Humans, Intravital Microscopy, Lasers, Male, Metal Nanoparticles, Mice, Mice, Inbred C57BL, Molecular Imaging, Molecular Probes, Oligodeoxyribonucleotides, Antisense, Optical Imaging, RNA, Messenger, Vascular Cell Adhesion Molecule-1, Wet Macular Degeneration
Show Abstract · Added April 10, 2019
Mouse laser-induced choroidal neovascularization (mouse LCNV) recapitulates the "wet" form of human age-related macular degeneration (AMD). Vascular cell adhesion molecule-1 (VCAM-1) is a known inflammatory biomarker, and it increases in the choroidal neovascular tissues characteristic of this experimental model. We have designed and constructed gold nanoparticles (AuNPs) functionalized with hairpin-DNA that incorporates an antisense sequence complementary to VCAM-1 mRNA (AS-VCAM-1 hAuNPs) and tested them as optical imaging probes. The 3' end of the hairpin is coupled to a near-infrared fluorophore that is quenched by the AuNP surface via Förster resonance energy transfer (FRET). Hybridization of the antisense sequence to VCAM-1 mRNA displaces the fluorophore away from the AuNP surface, inducing fluorescent activity. In vitro testing showed that hAuNPs hybridize to an exogenous complementary oligonucleotide within a pH range of 4.5-7.4, and that they are stable at reduced pH. LCNV mice received tail-vein injections of AS-VCAM-1 hAuNPs. Hyperspectral imaging revealed the delivery of AS-VCAM-1 hAuNPs to excised choroidal tissues. Fluorescent images of CNV lesions were obtained, presumably in response to the hybridization of AS-hAuNPs to LCNV-induced VCAM-1 mRNA. This is the first demonstration of systemic delivery of hAuNPs to ocular tissues to facilitate mRNA imaging of any target.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Human DNA polymerase η accommodates RNA for strand extension.
Su Y, Egli M, Guengerich FP
(2017) J Biol Chem 292: 18044-18051
MeSH Terms: 8-Hydroxy-2'-Deoxyguanosine, Base Pair Mismatch, DNA Primers, DNA Replication, DNA-Directed DNA Polymerase, Deoxyguanosine, Electrophoretic Mobility Shift Assay, Humans, Kinetics, Nucleic Acid Heteroduplexes, Nucleic Acid Hybridization, Oligodeoxyribonucleotides, Oligoribonucleotides, Pyrimidine Dimers, RNA, Recombinant Proteins, Reverse Transcription, Substrate Specificity, Transcription Elongation, Genetic
Show Abstract · Added March 14, 2018
Ribonucleotides are the natural analogs of deoxyribonucleotides, which can be misinserted by DNA polymerases, leading to the most abundant DNA lesions in genomes. During replication, DNA polymerases tolerate patches of ribonucleotides on the parental strands to different extents. The majority of human DNA polymerases have been reported to misinsert ribonucleotides into genomes. However, only PrimPol, DNA polymerase α, telomerase, and the mitochondrial human DNA polymerase (hpol) γ have been shown to tolerate an entire RNA strand. Y-family hpol η is known for translesion synthesis opposite the UV-induced DNA lesion cyclobutane pyrimidine dimer and was recently found to incorporate ribonucleotides into DNA. Here, we report that hpol η is able to bind DNA/DNA, RNA/DNA, and DNA/RNA duplexes with similar affinities. In addition, hpol η, as well as another Y-family DNA polymerase, hpol κ, accommodates RNA as one of the two strands during primer extension, mainly by inserting dNMPs opposite unmodified templates or DNA lesions, such as 8-oxo-2'-deoxyguanosine or cyclobutane pyrimidine dimer, even in the presence of an equal amount of the DNA/DNA substrate. The discovery of this RNA-accommodating ability of hpol η redefines the traditional concept of human DNA polymerases and indicates potential new functions of hpol η .
© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Polymerase Bypass of N(6)-Deoxyadenosine Adducts Derived from Epoxide Metabolites of 1,3-Butadiene.
Kotapati S, Wickramaratne S, Esades A, Boldry EJ, Quirk Dorr D, Pence MG, Guengerich FP, Tretyakova NY
(2015) Chem Res Toxicol 28: 1496-507
MeSH Terms: Butadienes, Chromatography, High Pressure Liquid, DNA, DNA Adducts, DNA Primers, DNA Replication, DNA-Directed DNA Polymerase, Deoxyadenosines, Epoxy Compounds, Humans, Kinetics, Oligodeoxyribonucleotides, Spectrometry, Mass, Electrospray Ionization
Show Abstract · Added March 14, 2018
N(6)-(2-Hydroxy-3-buten-1-yl)-2'-deoxyadenosine (N(6)-HB-dA I) and N(6),N(6)-(2,3-dihydroxybutan-1,4-diyl)-2'-deoxyadenosine (N(6),N(6)-DHB-dA) are exocyclic DNA adducts formed upon alkylation of the N(6) position of adenine in DNA by epoxide metabolites of 1,3-butadiene (BD), a common industrial and environmental chemical classified as a human and animal carcinogen. Since the N(6)-H atom of adenine is required for Watson-Crick hydrogen bonding with thymine, N(6)-alkylation can prevent adenine from normal pairing with thymine, potentially compromising the accuracy of DNA replication. To evaluate the ability of BD-derived N(6)-alkyladenine lesions to induce mutations, synthetic oligodeoxynucleotides containing site-specific (S)-N(6)-HB-dA I and (R,R)-N(6),N(6)-DHB-dA adducts were subjected to in vitro translesion synthesis in the presence of human DNA polymerases β, η, ι, and κ. While (S)-N(6)-HB-dA I was readily bypassed by all four enzymes, only polymerases η and κ were able to carry out DNA synthesis past (R,R)-N(6),N(6)-DHB-dA. Steady-state kinetic analyses indicated that all four DNA polymerases preferentially incorporated the correct base (T) opposite (S)-N(6)-HB-dA I. In contrast, hPol β was completely blocked by (R,R)-N(6),N(6)-DHB-dA, while hPol η and κ inserted A, G, C, or T opposite the adduct with similar frequency. HPLC-ESI-MS/MS analysis of primer extension products confirmed that while translesion synthesis past (S)-N(6)-HB-dA I was mostly error-free, replication of DNA containing (R,R)-N(6),N(6)-DHB-dA induced significant numbers of A, C, and G insertions and small deletions. These results indicate that singly substituted (S)-N(6)-HB-dA I lesions are not miscoding, but that exocyclic (R,R)-N(6),N(6)-DHB-dA adducts are strongly mispairing, probably due to their inability to form stable Watson-Crick pairs with dT.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Synthesis of G-N2-(CH2)3-N2-G Trimethylene DNA Interstrand Cross-Links.
Gruppi F, Johnson Salyard TL, Rizzo CJ
(2014) Curr Protoc Nucleic Acid Chem 56: 5.14.1-15
MeSH Terms: Cross-Linking Reagents, Oligodeoxyribonucleotides
Show Abstract · Added January 7, 2016
The synthesis of G-N(2)-(CH(2))(3)-N(2)-G trimethylene DNA interstrand cross-links (ICLs) in a 5'-CG-3' and 5'-GC-3' sequence from oligodeoxynucleotides containing N(2)-(3-aminopropyl)-2'-deoxyguanosine and 2-fluoro-O(6)-(trimethylsilylethyl)inosine is presented. Automated solid-phase DNA synthesis was used for unmodified bases and modified nucleotides were incorporated via their corresponding phosphoramidite reagent by a manual coupling protocol. The preparation of the phosphoramidite reagents for incorporation of N(2)-(3-aminopropyl)-2'-deoxyguanosine is reported. The high-purity trimethylene DNA interstrand cross-link product is obtained through a nucleophilic aromatic substitution reaction between the N(2)-(3-aminopropyl)-2'-deoxyguanosine- and 2-fluoro-O(6)-(trimethylsilylethyl)inosine-containing oligodeoxynucleotides.
Copyright © 2014 John Wiley & Sons, Inc.
0 Communities
1 Members
0 Resources
2 MeSH Terms
Major groove orientation of the (2S)-N(6)-(2-hydroxy-3-buten-1-yl)-2'-deoxyadenosine DNA adduct induced by 1,2-epoxy-3-butene.
Kowal EA, Wickramaratne S, Kotapati S, Turo M, Tretyakova N, Stone MP
(2014) Chem Res Toxicol 27: 1675-86
MeSH Terms: Alkylation, Butadienes, DNA, DNA Adducts, Deoxyadenosines, Epoxy Compounds, Humans, Molecular Dynamics Simulation, Nuclear Magnetic Resonance, Biomolecular, Nucleic Acid Conformation, Nucleic Acid Denaturation, Oligodeoxyribonucleotides, Stereoisomerism, Transition Temperature, ras Proteins
Show Abstract · Added January 20, 2015
1,3-Butadiene (BD) is an environmental and occupational toxicant classified as a human carcinogen. It is oxidized by cytochrome P450 monooxygenases to 1,2-epoxy-3-butene (EB), which alkylates DNA. BD exposures lead to large numbers of mutations at A:T base pairs even though alkylation of guanines is more prevalent, suggesting that one or more adenine adducts of BD play a role in BD-mediated genotoxicity. However, the etiology of BD-mediated genotoxicity at adenine remains poorly understood. EB alkylates the N(6) exocyclic nitrogen of adenine to form N(6)-(hydroxy-3-buten-1-yl)-2'-dA ((2S)-N(6)-HB-dA) adducts ( Tretyakova , N. , Lin , Y. , Sangaiah , R. , Upton , P. B. , and Swenberg , J. A. ( 1997 ) Carcinogenesis 18 , 137 - 147 ). The structure of the (2S)-N(6)-HB-dA adduct has been determined in the 5'-d(C(1)G(2)G(3)A(4)C(5)Y(6)A(7)G(8)A(9)A(10)G(11))-3':5'-d(C(12)T(13)T(14)C(15)T(16)T(17)G(18)T(19) C(20)C(21)G(22))-3' duplex [Y = (2S)-N(6)-HB-dA] containing codon 61 (underlined) of the human N-ras protooncogene, from NMR spectroscopy. The (2S)-N(6)-HB-dA adduct was positioned in the major groove, such that the butadiene moiety was oriented in the 3' direction. At the Cα carbon, the methylene protons of the modified nucleobase Y(6) faced the 5' direction, which placed the Cβ carbon in the 3' direction. The Cβ hydroxyl group faced toward the solvent, as did carbons Cγ and Cδ. The Cβ hydroxyl group did not form hydrogen bonds with either T(16) O(4) or T(17) O(4). The (2S)-N(6)-HB-dA nucleoside maintained the anti conformation about the glycosyl bond, and the modified base retained Watson-Crick base pairing with the complementary base (T(17)). The adduct perturbed stacking interactions at base pairs C(5):G(18), Y(6):T(17), and A(7):T(16) such that the Y(6) base did not stack with its 5' neighbor C(5), but it did with its 3' neighbor A(7). The complementary thymine T(17) stacked well with both 5' and 3' neighbors T(16) and G(18). The presence of the (2S)-N(6)-HB-dA resulted in a 5 °C reduction in the Tm of the duplex, which is attributed to less favorable stacking interactions and adduct accommodation in the major groove.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Base-displaced intercalation of the 2-amino-3-methylimidazo[4,5-f]quinolone N2-dG adduct in the NarI DNA recognition sequence.
Stavros KM, Hawkins EK, Rizzo CJ, Stone MP
(2014) Nucleic Acids Res 42: 3450-63
MeSH Terms: Aminoquinolines, Base Sequence, Benzimidazoles, DNA, DNA Adducts, Deoxyribonucleases, Type II Site-Specific, Models, Molecular, Nuclear Magnetic Resonance, Biomolecular, Nucleic Acid Conformation, Oligodeoxyribonucleotides, Protons
Show Abstract · Added March 10, 2014
2-Amino-3-methylimidazo[4,5-f]quinolone (IQ), a heterocyclic amine found in cooked meats, undergoes bioactivation to a nitrenium ion, which alkylates guanines at both the C8-dG and N2-dG positions. The conformation of a site-specific N2-dG-IQ adduct in an oligodeoxynucleotide duplex containing the iterated CG repeat restriction site of the NarI endonuclease has been determined. The IQ moiety intercalates, with the IQ H4a and CH3 protons facing the minor groove, and the IQ H7a, H8a and H9a protons facing the major groove. The adducted dG maintains the anti-conformation about the glycosyl bond. The complementary dC is extruded into the major groove. The duplex maintains its thermal stability, which is attributed to stacking between the IQ moiety and the 5'- and 3'-neighboring base pairs. This conformation is compared to that of the C8-dG-IQ adduct in the same sequence, which also formed a 'base-displaced intercalated' conformation. However, the C8-dG-IQ adopted the syn conformation placing the Watson-Crick edge of the modified dG into the major groove. In addition, the C8-dG-IQ adduct was oriented with the IQ CH3 group and H4a and H5a facing the major groove. These differences may lead to differential processing during DNA repair and replication.
0 Communities
2 Members
0 Resources
11 MeSH Terms
Site-specific stabilization of DNA by a tethered major groove amine, 7-aminomethyl-7-deaza-2'-deoxyguanosine.
Szulik MW, Voehler MW, Ganguly M, Gold B, Stone MP
(2013) Biochemistry 52: 7659-68
MeSH Terms: DNA, Kinetics, Models, Molecular, Molecular Dynamics Simulation, Nuclear Magnetic Resonance, Biomolecular, Nucleic Acid Conformation, Nucleic Acid Denaturation, Nucleoside Q, Nucleotide Motifs, Oligodeoxyribonucleotides, Thermodynamics
Show Abstract · Added March 7, 2014
A cationic 7-aminomethyl-7-deaza-2'-deoxyguanosine (7amG) was incorporated site-specifically into the self-complementary duplex d(G¹A²G³A⁴X⁵C⁶G⁷C⁸T⁹C¹⁰T¹¹C¹²)₂ (X = 7amG). This construct placed two positively charged amines adjacent to the major groove edges of two symmetry-related guanines, providing a model for probing how cation binding in the major groove modulates the structure and stability of DNA. Molecular dynamics calculations restrained by nuclear magnetic resonance (NMR) data revealed that the tethered cationic amines were in plane with the modified base pairs. The tethered amines did not form salt bridges to the phosphodiester backbone. There was also no indication of the amines being capable of hydrogen bonding to flanking DNA bases. NMR spectroscopy as a function of temperature revealed that the X⁵ imino resonance remained sharp at 55 °C. Additionally, two 5'-neighboring base pairs, A⁴:T⁹ and G³:C¹⁰, were stabilized with respect to the exchange of their imino protons with solvent. The equilibrium constant for base pair opening at the A⁴:T⁹ base pair determined by magnetization transfer from water in the absence and presence of added ammonia base catalyst decreased for the modified duplex compared to that of the A⁴:T⁹ base pair in the unmodified duplex, which confirmed that the overall fraction of the A⁴:T⁹ base pair in the open state of the modified duplex decreased. This was also observed for the G³:C¹⁰ base pair, where αK(op) for the G³:C¹⁰ base pair in the modified duplex was 3.0 × 10⁶ versus 4.1 × 10⁶ for the same base pair in the unmodified duplex. In contrast, equilibrium constants for base pair opening at the X⁵:C⁸ and C⁶:G⁷ base pairs did not change at 15 °C. These results argue against the notion that electrostatic interactions with DNA are entirely entropic and suggest that major groove cations can stabilize DNA via enthalpic contributions to the free energy of duplex formation.
0 Communities
1 Members
0 Resources
11 MeSH Terms
1,N2-Etheno-2'-deoxyguanosine adopts the syn conformation about the glycosyl bond when mismatched with deoxyadenosine.
Shanmugam G, Kozekov ID, Guengerich FP, Rizzo CJ, Stone MP
(2011) Chem Res Toxicol 24: 1071-9
MeSH Terms: Base Pair Mismatch, DNA Polymerase I, DNA Polymerase II, DNA Polymerase beta, Deoxyadenosines, Escherichia coli, Hydrogen Bonding, Hydrogen-Ion Concentration, Magnetic Resonance Spectroscopy, Oligodeoxyribonucleotides, Protons, Sulfolobus solfataricus, Transition Temperature
Show Abstract · Added March 7, 2014
The oligodeoxynucleotide 5'-CGCATXGAATCC-3'·5'-GGATTCAATGCG-3' containing 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-εdG) opposite deoxyadenosine (named the 1,N(2)-εdG·dA duplex) models the mismatched adenine product associated with error-prone bypass of 1,N(2)-εdG by the Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) and by Escherichia coli polymerases pol I exo(-) and pol II exo(-). At pH 5.2, the T(m) of this duplex was increased by 3 °C as compared to the duplex in which the 1,N(2)-εdG lesion is opposite dC, and it was increased by 2 °C compared to the duplex in which guanine is opposite dA (the dG·dA duplex). A strong NOE between the 1,N(2)-εdG imidazole proton and the anomeric proton of the attached deoxyribose, accompanied by strong NOEs to the minor groove A(20) H2 proton and the mismatched A(19) H2 proton from the complementary strand, establish that 1,N(2)-εdG rotated about the glycosyl bond from the anti to the syn conformation. The etheno moiety was placed into the major groove. This resulted in NOEs between the etheno protons and T(5) CH(3). A strong NOE between A(20) H2 and A(19) H2 protons established that A(19), opposite to 1,N(2)-εdG, adopted the anti conformation and was directed toward the helix. The downfield shifts of the A(19) amino protons suggested protonation of dA. Thus, the protonated 1,N(2)-εdG·dA base pair was stabilized by hydrogen bonds between 1,N(2)-εdG N1 and A(19) N1H(+) and between 1,N(2)-εdG O(9) and A(19)N(6)H. The broad imino proton resonances for the 5'- and 3'-flanking bases suggested that both neighboring base pairs were perturbed. The increased stability of the 1,N(2)-εdG·dA base pair, compared to that of the 1,N(2)-εdG·dC base pair, correlated with the mismatch adenine product observed during the bypass of 1,N(2)-εdG by the Dpo4 polymerase, suggesting that stabilization of this mismatch may be significant with regard to the biological processing of 1,N(2)-εdG.
© 2011 American Chemical Society
0 Communities
3 Members
0 Resources
13 MeSH Terms
γ-Hydroxy-1,N2-propano-2'-deoxyguanosine DNA adduct conjugates the N-terminal amine of the KWKK peptide via a carbinolamine linkage.
Huang H, Wang H, Voehler MW, Kozekova A, Rizzo CJ, McCullough AK, Lloyd RS, Stone MP
(2011) Chem Res Toxicol 24: 1123-33
MeSH Terms: Acrolein, Amines, Amino Acid Sequence, DNA Adducts, Deoxyguanosine, Hydrogen Bonding, Imines, Magnetic Resonance Spectroscopy, Molecular Dynamics Simulation, Oligodeoxyribonucleotides, Peptides, Transition Temperature
Show Abstract · Added March 7, 2014
The γ-hydroxy-1,N(2)-propano-2'-deoxyguanosine adduct (γ-OH-PdG) was introduced into 5'-d(GCTAGCXAGTCC)-3'·5'-d(GGACTCGCTAGC)-3' (X = γ-OH-PdG). In the presence of excess peptide KWKK, (13)C isotope-edited NMR revealed the formation of two spectroscopically distinct DNA-KWKK conjugates. These involved the reaction of the KWKK N-terminal amino group with the N(2)-dG propylaldehyde tautomer of the γ-OH-PdG lesion. The guanine N1 base imino resonance at the site of conjugation was observed in isotope-edited (15)N NMR experiments, suggesting that the conjugated guanine was inserted into the duplex and that the guanine imino proton was protected from exchange with water. The conjugates could be reduced in the presence of NaCNBH(3), suggesting that they existed, in part, as imine (Schiff base) linkages. However, (13)C isotope-edited NMR failed to detect the imine linkages, suggesting that these KWKK conjugates existed predominantly as diastereomeric carbinolamines, in equilibrium with trace amounts of the imines. The structures of the diastereomeric DNA-KWKK conjugates were predicted from potential energy minimization of model structures derived from the refined structure of the fully reduced cross-link [ Huang, H., Kozekov, I. D., Kozekova, A., Rizzo, C. J., McCullough, A., Lloyd, R. S., and Stone, M. P. ( 2010 ) Biochemistry , 49 , 6155 -6164 ]. Molecular dynamics calculations carried out in explicit solvent suggested that the conjugate bearing the S-carbinolamine linkage was the major species due to its potential for intramolecular hydrogen bonding. These carbinolamine DNA-KWKK conjugates thermally stabilized duplex DNA. However, the DNA-KWKK conjugates were chemically reversible and dissociated when the DNA was denatured. In this 5'-CpX-3' sequence, the DNA-KWKK conjugates slowly converted to interstrand N(2)-dG:N(2)-dG DNA cross-links and ring-opened γ-OH-PdG derivatives over a period of weeks.
© 2011 American Chemical Society
0 Communities
2 Members
0 Resources
12 MeSH Terms
Drosophila MMP2 regulates the matrix molecule faulty attraction (Frac) to promote motor axon targeting in Drosophila.
Miller CM, Liu N, Page-McCaw A, Broihier HT
(2011) J Neurosci 31: 5335-47
MeSH Terms: Age Factors, Animals, Animals, Genetically Modified, Axons, Bone Morphogenetic Proteins, Calcium-Binding Proteins, Drosophila, Drosophila Proteins, Embryo, Nonmammalian, Extracellular Matrix Proteins, Gene Expression Regulation, Developmental, Green Fluorescent Proteins, Helix-Loop-Helix Motifs, Humans, Lim Kinases, Matrix Metalloproteinase 2, Microfilament Proteins, Models, Biological, Motor Neurons, Mutation, Neuroglia, Oligodeoxyribonucleotides, Antisense, RNA, Signal Transduction, Two-Hybrid System Techniques
Show Abstract · Added March 5, 2014
Matrix metalloproteinases (MMPs) are widely hypothesized to regulate signaling events through processing of extracellular matrix (ECM) molecules. We previously demonstrated that membrane-associated Mmp2 is expressed in exit glia and contributes to motor axon targeting. To identify possible substrates, we undertook a yeast interaction screen for Mmp2-binding proteins and identified the novel ECM protein faulty attraction (Frac). Frac encodes a multidomain extracellular protein rich in epidermal growth factor (EGF) and calcium-binding EGF domains, related to the vertebrate Fibrillin and Fibulin gene families. It is expressed in mesodermal domains flanking Mmp2-positive glia. The juxtaposition of Mmp2 and Frac proteins raises the possibility that Frac is a proteolytic target of Mmp2. Consistent with this hypothesis, levels of full-length Frac are increased in Mmp2 loss-of-function (LOF) and decreased in Mmp2 gain-of-function (GOF) embryos, indicating that Frac cleavage is Mmp2 dependent. To test whether frac is necessary for axon targeting, we characterized guidance in frac LOF mutants. Motor axons in frac LOF embryos are loosely associated and project ectopically, a phenotype essentially equivalent to that of Mmp2 LOF. The phenotypic similarity between enzyme and substrate mutants argues that Mmp2 activates Frac. In addition, Mmp2 overexpression pathfinding phenotypes depend on frac activity, indicating that Mmp2 is genetically upstream of frac. Last, overexpression experiments suggest that Frac is unlikely to have intrinsic signaling activity, raising the possibility that an Mmp2-generated Frac fragment acts as a guidance cue cofactor. Indeed, we present genetic evidence that Frac regulates a non-canonical LIM kinase 1-dependent bone morphogenetic protein signaling pathway in motoneurons necessary for axon pathfinding during embryogenesis.
0 Communities
1 Members
0 Resources
25 MeSH Terms