Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 400

Publication Record

Connections

Treating Nonalcoholic Fatty Liver Disease From the Outside In?
Flynn CR
(2019) Cell Mol Gastroenterol Hepatol 7: 682-683
MeSH Terms: Animals, Hepatocytes, Intracellular Signaling Peptides and Proteins, Mice, Non-alcoholic Fatty Liver Disease, Oligonucleotides, Antisense, Protein-Serine-Threonine Kinases
Added April 15, 2019
0 Communities
1 Members
0 Resources
7 MeSH Terms
Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase.
Hunter RW, Hughey CC, Lantier L, Sundelin EI, Peggie M, Zeqiraj E, Sicheri F, Jessen N, Wasserman DH, Sakamoto K
(2018) Nat Med 24: 1395-1406
MeSH Terms: Adenosine Monophosphate, Aminoimidazole Carboxamide, Animals, Base Sequence, Chickens, Disease Models, Animal, Fructose-Bisphosphatase, Glucose, Glucose Intolerance, Homeostasis, Humans, Hypoglycemia, Liver, Metformin, Mice, Inbred C57BL, Mutation, Obesity, Prodrugs, Ribonucleotides
Show Abstract · Added March 26, 2019
Metformin is a first-line drug for the treatment of individuals with type 2 diabetes, yet its precise mechanism of action remains unclear. Metformin exerts its antihyperglycemic action primarily through lowering hepatic glucose production (HGP). This suppression is thought to be mediated through inhibition of mitochondrial respiratory complex I, and thus elevation of 5'-adenosine monophosphate (AMP) levels and the activation of AMP-activated protein kinase (AMPK), though this proposition has been challenged given results in mice lacking hepatic AMPK. Here we report that the AMP-inhibited enzyme fructose-1,6-bisphosphatase-1 (FBP1), a rate-controlling enzyme in gluconeogenesis, functions as a major contributor to the therapeutic action of metformin. We identified a point mutation in FBP1 that renders it insensitive to AMP while sparing regulation by fructose-2,6-bisphosphate (F-2,6-P), and knock-in (KI) of this mutant in mice significantly reduces their response to metformin treatment. We observe this during a metformin tolerance test and in a metformin-euglycemic clamp that we have developed. The antihyperglycemic effect of metformin in high-fat diet-fed diabetic FBP1-KI mice was also significantly blunted compared to wild-type controls. Collectively, we show a new mechanism of action for metformin and provide further evidence that molecular targeting of FBP1 can have antihyperglycemic effects.
1 Communities
1 Members
0 Resources
19 MeSH Terms
Examination of Signatures of Recent Positive Selection on Genes Involved in Human Sialic Acid Biology.
Moon JM, Aronoff DM, Capra JA, Abbot P, Rokas A
(2018) G3 (Bethesda) 8: 1315-1325
MeSH Terms: Genetic Variation, Humans, N-Acetylneuraminic Acid, Nucleotides, Selection, Genetic
Show Abstract · Added March 14, 2018
Sialic acids are nine carbon sugars ubiquitously found on the surfaces of vertebrate cells and are involved in various immune response-related processes. In humans, at least 58 genes spanning diverse functions, from biosynthesis and activation to recycling and degradation, are involved in sialic acid biology. Because of their role in immunity, sialic acid biology genes have been hypothesized to exhibit elevated rates of evolutionary change. Consistent with this hypothesis, several genes involved in sialic acid biology have experienced higher rates of non-synonymous substitutions in the human lineage than their counterparts in other great apes, perhaps in response to ancient pathogens that infected hominins millions of years ago (paleopathogens). To test whether sialic acid biology genes have also experienced more recent positive selection during the evolution of the modern human lineage, reflecting adaptation to contemporary cosmopolitan or geographically-restricted pathogens, we examined whether their protein-coding regions showed evidence of recent hard and soft selective sweeps. This examination involved the calculation of four measures that quantify changes in allele frequency spectra, extent of population differentiation, and haplotype homozygosity caused by recent hard and soft selective sweeps for 55 sialic acid biology genes using publicly available whole genome sequencing data from 1,668 humans from three ethnic groups. To disentangle evidence for selection from confounding demographic effects, we compared the observed patterns in sialic acid biology genes to simulated sequences of the same length under a model of neutral evolution that takes into account human demographic history. We found that the patterns of genetic variation of most sialic acid biology genes did not significantly deviate from neutral expectations and were not significantly different among genes belonging to different functional categories. Those few sialic acid biology genes that significantly deviated from neutrality either experienced soft sweeps or population-specific hard sweeps. Interestingly, while most hard sweeps occurred on genes involved in sialic acid recognition, most soft sweeps involved genes associated with recycling, degradation and activation, transport, and transfer functions. We propose that the lack of signatures of recent positive selection for the majority of the sialic acid biology genes is consistent with the view that these genes regulate immune responses against ancient rather than contemporary cosmopolitan or geographically restricted pathogens.
Copyright © 2018 Moon et al.
0 Communities
2 Members
0 Resources
5 MeSH Terms
Modulation of thalamocortical oscillations by TRIP8b, an auxiliary subunit for HCN channels.
Zobeiri M, Chaudhary R, Datunashvili M, Heuermann RJ, Lüttjohann A, Narayanan V, Balfanz S, Meuth P, Chetkovich DM, Pape HC, Baumann A, van Luijtelaar G, Budde T
(2018) Brain Struct Funct 223: 1537-1564
MeSH Terms: Action Potentials, Adenine, Adenylyl Cyclase Inhibitors, Animals, Cardiovascular Agents, Cerebral Cortex, Cyclic AMP, Cyclic GMP, Female, Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels, Male, Membrane Proteins, Mice, Mice, Inbred C57BL, Mice, Transgenic, Models, Neurological, Neural Pathways, Peroxins, Pyrimidines, Sodium Channel Blockers, Tetrodotoxin, Thalamus, Thionucleotides
Show Abstract · Added April 2, 2019
Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels have important functions in controlling neuronal excitability and generating rhythmic oscillatory activity. The role of tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) in regulation of hyperpolarization-activated inward current, I , in the thalamocortical system and its functional relevance for the physiological thalamocortical oscillations were investigated. A significant decrease in I current density, in both thalamocortical relay (TC) and cortical pyramidal neurons was found in TRIP8b-deficient mice (TRIP8b). In addition basal cAMP levels in the brain were found to be decreased while the availability of the fast transient A-type K current, I , in TC neurons was increased. These changes were associated with alterations in intrinsic properties and firing patterns of TC neurons, as well as intrathalamic and thalamocortical network oscillations, revealing a significant increase in slow oscillations in the delta frequency range (0.5-4 Hz) during episodes of active-wakefulness. In addition, absence of TRIP8b suppresses the normal desynchronization response of the EEG during the switch from slow-wave sleep to wakefulness. It is concluded that TRIP8b is necessary for the modulation of physiological thalamocortical oscillations due to its direct effect on HCN channel expression in thalamus and cortex and that mechanisms related to reduced cAMP signaling may contribute to the present findings.
0 Communities
1 Members
0 Resources
MeSH Terms
Human DNA polymerase η accommodates RNA for strand extension.
Su Y, Egli M, Guengerich FP
(2017) J Biol Chem 292: 18044-18051
MeSH Terms: Base Pair Mismatch, DNA Primers, DNA Replication, DNA-Directed DNA Polymerase, Deoxyguanosine, Electrophoretic Mobility Shift Assay, Humans, Kinetics, Nucleic Acid Heteroduplexes, Nucleic Acid Hybridization, Oligodeoxyribonucleotides, Oligoribonucleotides, Pyrimidine Dimers, RNA, Recombinant Proteins, Reverse Transcription, Substrate Specificity, Transcription Elongation, Genetic
Show Abstract · Added March 14, 2018
Ribonucleotides are the natural analogs of deoxyribonucleotides, which can be misinserted by DNA polymerases, leading to the most abundant DNA lesions in genomes. During replication, DNA polymerases tolerate patches of ribonucleotides on the parental strands to different extents. The majority of human DNA polymerases have been reported to misinsert ribonucleotides into genomes. However, only PrimPol, DNA polymerase α, telomerase, and the mitochondrial human DNA polymerase (hpol) γ have been shown to tolerate an entire RNA strand. Y-family hpol η is known for translesion synthesis opposite the UV-induced DNA lesion cyclobutane pyrimidine dimer and was recently found to incorporate ribonucleotides into DNA. Here, we report that hpol η is able to bind DNA/DNA, RNA/DNA, and DNA/RNA duplexes with similar affinities. In addition, hpol η, as well as another Y-family DNA polymerase, hpol κ, accommodates RNA as one of the two strands during primer extension, mainly by inserting dNMPs opposite unmodified templates or DNA lesions, such as 8-oxo-2'-deoxyguanosine or cyclobutane pyrimidine dimer, even in the presence of an equal amount of the DNA/DNA substrate. The discovery of this RNA-accommodating ability of hpol η redefines the traditional concept of human DNA polymerases and indicates potential new functions of hpol η .
© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Blocking Zebrafish MicroRNAs with Morpholinos.
Flynt AS, Rao M, Patton JG
(2017) Methods Mol Biol 1565: 59-78
MeSH Terms: Animals, Electroporation, Gene Expression Regulation, Gene Silencing, Gene Transfer Techniques, MicroRNAs, Microinjections, Morpholinos, Oligonucleotides, Antisense, Retina, Zebrafish
Show Abstract · Added August 4, 2017
Antisense morpholino oligonucleotides have been commonly used in zebrafish to inhibit mRNA function, either by inhibiting pre-mRNA splicing or by blocking translation initiation. Even with the advent of genome editing by CRISP/Cas9 technology, morpholinos provide a useful and rapid tool to knockdown gene expression. This is especially true when dealing with multiple alleles and large gene families where genetic redundancy can complicate knockout of all family members. miRNAs are small noncoding RNAs that are often encoded in gene families and can display extensive genetic redundancy. This redundancy, plus their small size which can limit targeting by CRISPR/Cas9, makes morpholino-based strategies particularly attractive for inhibition of miRNA function. We provide the rationale, background, and methods to inhibit miRNA function with antisense morpholinos during early development and in the adult retina in zebrafish.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Ion Mobility Collision Cross Section Compendium.
May JC, Morris CB, McLean JA
(2017) Anal Chem 89: 1032-1044
MeSH Terms: Animals, Gases, Humans, Inorganic Chemicals, Ions, Lipids, Mass Spectrometry, Nucleotides, Proteins
Added December 17, 2018
1 Communities
1 Members
0 Resources
9 MeSH Terms
Mechanisms of Insertion of dCTP and dTTP Opposite the DNA Lesion O6-Methyl-2'-deoxyguanosine by Human DNA Polymerase η.
Patra A, Zhang Q, Guengerich FP, Egli M
(2016) J Biol Chem 291: 24304-24313
MeSH Terms: Bacterial Proteins, Crystallography, X-Ray, DNA, DNA Polymerase beta, DNA-Directed DNA Polymerase, Deoxycytosine Nucleotides, Humans, Sulfolobus solfataricus, Thymine Nucleotides
Show Abstract · Added March 14, 2018
O-Methyl-2'-deoxyguanosine (O-MeG) is a ubiquitous DNA lesion, formed not only by xenobiotic carcinogens but also by the endogenous methylating agent S-adenosylmethionine. It can introduce mutations during DNA replication, with different DNA polymerases displaying different ratios of correct or incorrect incorporation opposite this nucleoside. Of the "translesion" Y-family human DNA polymerases (hpols), hpol η is most efficient in incorporating equal numbers of correct and incorrect C and T bases. However, the mechanistic basis for this specific yet indiscriminate activity is not known. To explore this question, we report biochemical and structural analysis of the catalytic core of hpol η. Activity assays showed the truncated form displayed similar misincorporation properties as the full-length enzyme, incorporating C and T equally and extending from both. X-ray crystal structures of both dC and dT paired with O-MeG were solved in both insertion and extension modes. The structures revealed a Watson-Crick-like pairing between O-MeG and 2"-deoxythymidine-5"-[(α, β)-imido]triphosphate (approximating dT) at both the insertion and extension stages with formation of two H-bonds. Conversely, both the structures with O- MeG opposite dCTP and dC display sheared configuration of base pairs but to different degrees, with formation of two bifurcated H-bonds and two single H-bonds in the structures trapped in the insertion and extension states, respectively. The structural data are consistent with the observed tendency of hpol η to insert both dC and dT opposite the O-MeG lesion with similar efficiencies. Comparison of the hpol η active site configurations with either O-MeG:dC or O-MeG:dT bound compared with the corresponding situations in structures of complexes of Sulfolobus solfataricus Dpo4, a bypass pol that favors C relative to T by a factor of ∼4, helps rationalize the more error-prone synthesis opposite the lesion by hpol η.
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Kinetic and Structural Impact of Metal Ions and Genetic Variations on Human DNA Polymerase ι.
Choi JY, Patra A, Yeom M, Lee YS, Zhang Q, Egli M, Guengerich FP
(2016) J Biol Chem 291: 21063-21073
MeSH Terms: Amino Acid Substitution, Crystallography, X-Ray, DNA-Directed DNA Polymerase, Deoxycytosine Nucleotides, Humans, Hydrogen Bonding, Kinetics, Magnesium, Manganese, Mutation, Missense, Protein Domains
Show Abstract · Added March 14, 2018
DNA polymerase (pol) ι is a Y-family polymerase involved in translesion synthesis, exhibiting higher catalytic activity with Mn than Mg The human germline R96G variant impairs both Mn-dependent and Mg-dependent activities of pol ι, whereas the Δ1-25 variant selectively enhances its Mg-dependent activity. We analyzed pre-steady-state kinetic and structural effects of these two metal ions and genetic variations on pol ι using pol ι core (residues 1-445) proteins. The presence of Mn (0.15 mm) instead of Mg (2 mm) caused a 770-fold increase in efficiency (k/K) of pol ι for dCTP insertion opposite G, mainly due to a 450-fold decrease in K The R96G and Δ1-25 variants displayed a 53-fold decrease and a 3-fold increase, respectively, in k/K for dCTP insertion opposite G with Mg when compared with wild type, substantially attenuated by substitution with Mn Crystal structures of pol ι ternary complexes, including the primer terminus 3'-OH and a non-hydrolyzable dCTP analogue opposite G with the active-site Mg or Mn, revealed that Mn achieves more optimal octahedral coordination geometry than Mg, with lower values in average coordination distance geometry in the catalytic metal A-site. Crystal structures of R96G revealed the loss of three H-bonds of residues Gly-96 and Tyr-93 with an incoming dNTP, due to the lack of an arginine, as well as a destabilized Tyr-93 side chain secondary to the loss of a cation-π interaction between both side chains. These results provide a mechanistic basis for alteration in pol ι catalytic function with coordinating metals and genetic variation.
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Horizontally acquired genes in early-diverging pathogenic fungi enable the use of host nucleosides and nucleotides.
Alexander WG, Wisecaver JH, Rokas A, Hittinger CT
(2016) Proc Natl Acad Sci U S A 113: 4116-21
MeSH Terms: Fungi, Gene Transfer, Horizontal, Genes, Fungal, Host-Pathogen Interactions, Nucleosides, Nucleotides, Phylogeny
Show Abstract · Added April 6, 2017
Horizontal gene transfer (HGT) among bacteria, archaea, and viruses is widespread, but the extent of transfers from these lineages into eukaryotic organisms is contentious. Here we systematically identify hundreds of genes that were likely acquired horizontally from a variety of sources by the early-diverging fungal phyla Microsporidia and Cryptomycota. Interestingly, the Microsporidia have acquired via HGT several genes involved in nucleic acid synthesis and salvage, such as those encoding thymidine kinase (TK), cytidylate kinase, and purine nucleotide phosphorylase. We show that these HGT-derived nucleic acid synthesis genes tend to function at the interface between the metabolic networks of the host and pathogen. Thus, these genes likely play vital roles in diversifying the useable nucleic acid components available to the intracellular parasite, often through the direct capture of resources from the host. Using an in vivo viability assay, we also demonstrate that one of these genes, TK, encodes an enzyme that is capable of activating known prodrugs to their active form, which suggests a possible treatment route for microsporidiosis. We further argue that interfacial genes with well-understood activities, especially those horizontally transferred from bacteria or viruses, could provide medical treatments for microsporidian infections.
0 Communities
1 Members
0 Resources
7 MeSH Terms