Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 7 of 7

Publication Record

Connections

Major groove orientation of the (2S)-N(6)-(2-hydroxy-3-buten-1-yl)-2'-deoxyadenosine DNA adduct induced by 1,2-epoxy-3-butene.
Kowal EA, Wickramaratne S, Kotapati S, Turo M, Tretyakova N, Stone MP
(2014) Chem Res Toxicol 27: 1675-86
MeSH Terms: Alkylation, Butadienes, DNA, DNA Adducts, Deoxyadenosines, Epoxy Compounds, Humans, Molecular Dynamics Simulation, Nuclear Magnetic Resonance, Biomolecular, Nucleic Acid Conformation, Nucleic Acid Denaturation, Oligodeoxyribonucleotides, Stereoisomerism, Transition Temperature, ras Proteins
Show Abstract · Added January 20, 2015
1,3-Butadiene (BD) is an environmental and occupational toxicant classified as a human carcinogen. It is oxidized by cytochrome P450 monooxygenases to 1,2-epoxy-3-butene (EB), which alkylates DNA. BD exposures lead to large numbers of mutations at A:T base pairs even though alkylation of guanines is more prevalent, suggesting that one or more adenine adducts of BD play a role in BD-mediated genotoxicity. However, the etiology of BD-mediated genotoxicity at adenine remains poorly understood. EB alkylates the N(6) exocyclic nitrogen of adenine to form N(6)-(hydroxy-3-buten-1-yl)-2'-dA ((2S)-N(6)-HB-dA) adducts ( Tretyakova , N. , Lin , Y. , Sangaiah , R. , Upton , P. B. , and Swenberg , J. A. ( 1997 ) Carcinogenesis 18 , 137 - 147 ). The structure of the (2S)-N(6)-HB-dA adduct has been determined in the 5'-d(C(1)G(2)G(3)A(4)C(5)Y(6)A(7)G(8)A(9)A(10)G(11))-3':5'-d(C(12)T(13)T(14)C(15)T(16)T(17)G(18)T(19) C(20)C(21)G(22))-3' duplex [Y = (2S)-N(6)-HB-dA] containing codon 61 (underlined) of the human N-ras protooncogene, from NMR spectroscopy. The (2S)-N(6)-HB-dA adduct was positioned in the major groove, such that the butadiene moiety was oriented in the 3' direction. At the Cα carbon, the methylene protons of the modified nucleobase Y(6) faced the 5' direction, which placed the Cβ carbon in the 3' direction. The Cβ hydroxyl group faced toward the solvent, as did carbons Cγ and Cδ. The Cβ hydroxyl group did not form hydrogen bonds with either T(16) O(4) or T(17) O(4). The (2S)-N(6)-HB-dA nucleoside maintained the anti conformation about the glycosyl bond, and the modified base retained Watson-Crick base pairing with the complementary base (T(17)). The adduct perturbed stacking interactions at base pairs C(5):G(18), Y(6):T(17), and A(7):T(16) such that the Y(6) base did not stack with its 5' neighbor C(5), but it did with its 3' neighbor A(7). The complementary thymine T(17) stacked well with both 5' and 3' neighbors T(16) and G(18). The presence of the (2S)-N(6)-HB-dA resulted in a 5 °C reduction in the Tm of the duplex, which is attributed to less favorable stacking interactions and adduct accommodation in the major groove.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Site-specific stabilization of DNA by a tethered major groove amine, 7-aminomethyl-7-deaza-2'-deoxyguanosine.
Szulik MW, Voehler MW, Ganguly M, Gold B, Stone MP
(2013) Biochemistry 52: 7659-68
MeSH Terms: DNA, Kinetics, Models, Molecular, Molecular Dynamics Simulation, Nuclear Magnetic Resonance, Biomolecular, Nucleic Acid Conformation, Nucleic Acid Denaturation, Nucleoside Q, Nucleotide Motifs, Oligodeoxyribonucleotides, Thermodynamics
Show Abstract · Added March 7, 2014
A cationic 7-aminomethyl-7-deaza-2'-deoxyguanosine (7amG) was incorporated site-specifically into the self-complementary duplex d(G¹A²G³A⁴X⁵C⁶G⁷C⁸T⁹C¹⁰T¹¹C¹²)₂ (X = 7amG). This construct placed two positively charged amines adjacent to the major groove edges of two symmetry-related guanines, providing a model for probing how cation binding in the major groove modulates the structure and stability of DNA. Molecular dynamics calculations restrained by nuclear magnetic resonance (NMR) data revealed that the tethered cationic amines were in plane with the modified base pairs. The tethered amines did not form salt bridges to the phosphodiester backbone. There was also no indication of the amines being capable of hydrogen bonding to flanking DNA bases. NMR spectroscopy as a function of temperature revealed that the X⁵ imino resonance remained sharp at 55 °C. Additionally, two 5'-neighboring base pairs, A⁴:T⁹ and G³:C¹⁰, were stabilized with respect to the exchange of their imino protons with solvent. The equilibrium constant for base pair opening at the A⁴:T⁹ base pair determined by magnetization transfer from water in the absence and presence of added ammonia base catalyst decreased for the modified duplex compared to that of the A⁴:T⁹ base pair in the unmodified duplex, which confirmed that the overall fraction of the A⁴:T⁹ base pair in the open state of the modified duplex decreased. This was also observed for the G³:C¹⁰ base pair, where αK(op) for the G³:C¹⁰ base pair in the modified duplex was 3.0 × 10⁶ versus 4.1 × 10⁶ for the same base pair in the unmodified duplex. In contrast, equilibrium constants for base pair opening at the X⁵:C⁸ and C⁶:G⁷ base pairs did not change at 15 °C. These results argue against the notion that electrostatic interactions with DNA are entirely entropic and suggest that major groove cations can stabilize DNA via enthalpic contributions to the free energy of duplex formation.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Interplay of structure, hydration and thermal stability in formacetal modified oligonucleotides: RNA may tolerate nonionic modifications better than DNA.
Kolarovic A, Schweizer E, Greene E, Gironda M, Pallan PS, Egli M, Rozners E
(2009) J Am Chem Soc 131: 14932-7
MeSH Terms: Acetals, Circular Dichroism, Crystallography, X-Ray, DNA, Models, Molecular, Nucleic Acid Conformation, Nucleic Acid Denaturation, Oligonucleotides, Osmotic Pressure, RNA, RNA Stability, Temperature, Transition Temperature
Show Abstract · Added May 27, 2014
DNA and RNA oligonucleotides having formacetal internucleoside linkages between uridine and adenosine nucleosides have been prepared and studied using UV thermal melting, osmotic stress, and X-ray crystallography. Formacetal modifications have remarkably different effects on double helical RNA and DNA-the formacetal stabilizes the RNA helix by +0.7 degrees C but destabilizes the DNA helix by -1.6 degrees C per modification. The apparently hydrophobic formacetal has little effect on hydration of RNA but decreases the hydration of DNA, which suggests that at least part of the difference in thermal stability may be related to differences in hydration. A crystal structure of modified DNA shows that two isolated formacetal linkages fit almost perfectly in an A-type helix (decamer). Taken together, the data suggest that RNA may tolerate nonionic backbone modifications better than DNA. Overall, formacetal appears to be an excellent mimic of phosphate linkage in RNA and an interesting modification for potential applications in fundamental studies and RNA-based gene control strategies, such as RNA interference.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Probing the influence of stereoelectronic effects on the biophysical properties of oligonucleotides: comprehensive analysis of the RNA affinity, nuclease resistance, and crystal structure of ten 2'-O-ribonucleic acid modifications.
Egli M, Minasov G, Tereshko V, Pallan PS, Teplova M, Inamati GB, Lesnik EA, Owens SR, Ross BS, Prakash TP, Manoharan M
(2005) Biochemistry 44: 9045-57
MeSH Terms: Base Sequence, Biophysical Phenomena, Biophysics, Crystallization, Crystallography, X-Ray, DNA, Enzyme Stability, Exonucleases, Models, Molecular, Nucleic Acid Conformation, Nucleic Acid Denaturation, Oligonucleotides, RNA, Ribonucleases, Static Electricity, Temperature
Show Abstract · Added March 5, 2014
The syntheses of 10 new RNA 2'-O-modifications, their incorporation into oligonucleotides, and an evaluation of their properties such as RNA affinity and nuclease resistance relevant to antisense activity are presented. All modifications combined with the natural phosphate backbone lead to significant gains in terms of the stability of hybridization to RNA relative to the first-generation DNA phosphorothioates (PS-DNA). The nuclease resistance afforded in particular by the 2'-O-modifications carrying a positive charge surpasses that of PS-DNA. However, small electronegative 2'-O-substituents, while enhancing the RNA affinity, do not sufficiently protect against degradation by nucleases. Similarly, oligonucleotides containing 3'-terminal residues modified with the relatively large 2'-O-[2-(benzyloxy)ethyl] substituent are rapidly degraded by exonucleases, proving wrong the assumption that steric bulk will generally improve protection against nuclease digestion. To analyze the factors that contribute to the enhanced RNA affinity and nuclease resistance we determined crystal structures of self-complementary A-form DNA decamer duplexes containing single 2'-O-modified thymidines per strand. Conformational preorganization of substituents, favorable electrostatic interactions between substituent and sugar-phosphate backbone, and a stable water structure in the vicinity of the 2'-O-modification all appear to contribute to the improved RNA affinity. Close association of positively charged substituents and phosphate groups was observed in the structures with modifications that protect most effectively against nucleases. The promising properties exhibited by some of the analyzed 2'-O-modifications may warrant a more detailed evaluation of their potential for in vivo antisense applications. Chemical modification of RNA can also be expected to significantly improve the efficacy of small interfering RNAs (siRNA). Therefore, the 2'-O-modifications introduced here may benefit the development of RNAi therapeutics.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Covalent incorporation of selenium into oligonucleotides for X-ray crystal structure determination via MAD: proof of principle. Multiwavelength anomalous dispersion.
Teplova M, Wilds CJ, Wawrzak Z, Tereshko V, Du Q, Carrasco N, Huang Z, Egli M
(2002) Biochimie 84: 849-58
MeSH Terms: Base Pairing, Base Sequence, Crystallization, Crystallography, X-Ray, Hot Temperature, Models, Molecular, Nucleic Acid Denaturation, Oligonucleotides, Organoselenium Compounds, Probability, Spectrometry, X-Ray Emission, Uridine
Show Abstract · Added March 5, 2014
Selenium was incorporated into an oligodeoxynucleotide in the form of 2'-methylseleno-uridine (U(Se)). The X-ray crystal structure of the duplex left open bracket d(GCGTA)U(Se)d(ACGC) right open bracket (2) was determined by the multiwavelength anomalous dispersion (MAD) technique and refined to a resolution of 1.3 A, demonstrating that selenium can selectively substitute oxygen in DNA and that the resulting compounds are chemically stable. Since derivatization at the 2'-alpha-position with selenium does not affect the preference of the sugar for the C3'-endo conformation, this strategy is suitable for incorporating selenium into RNA. The availability of selenium-containing nucleic acids for crystallographic phasing offers an attractive alternative to the commonly used halogenated pyrimidines.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Advantages of RT-PCR and denaturing gradient gel electrophoresis for analysis of genomic imprinting: detection of new mouse and human expressed polymorphisms.
Nakao M, Sutcliffe JS, Beaudet AL
(1996) Hum Mutat 7: 144-8
MeSH Terms: Animals, Base Sequence, Crosses, Genetic, DNA Primers, Electrophoresis, Polyacrylamide Gel, Gene Expression, Genomic Imprinting, Humans, Leukocytes, Mice, Mice, Inbred Strains, Molecular Sequence Data, Nucleic Acid Denaturation, Polymerase Chain Reaction, Polymorphism, Genetic, Transcription, Genetic
Show Abstract · Added February 20, 2014
Genomic imprinting, or differential expression of alleles based on parental origin, is documented for numerous mouse and human loci and is implicated in various phenotypes such as Wilms tumor, Beckwith-Wiedemann syndrome, Prader-Willi syndrome, and Angelman syndrome. Improved methods would facilitate the analysis of imprinting, and we describe a simple strategy designed to analyze transcripts for imprinting in mouse and human using reverse transcription-polymerase chain reaction (RT-PCR) in combination with GC-clamped denaturing gradient gel electrophoresis (DGGE). As a demonstration, novel polymorphisms in the untranslated portions of mRNA between CBA/NJ and Skive strains of mice were identified and used to document paternal expression of small nuclear ribonucleoprotein associated polypeptide N (Snrpn) in brain, maternal expression of H19 in liver, and biallelic expression of glyceraldehyde 3-phosphate dehydrogenease (Gapd) in liver. The method was also used to demonstrate a new polymorphism and monoallelic expression of H19 in human peripheral leukocytes. Assessment of imprinting for novel or unstudied transcripts requires identification and analysis of polymorphisms at the RNA level, and we believe that RT-PCR with DGGE is a preferred method for this application, with advantages over nuclease protection and other methods.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Phosphorylation of topoisomerase II by casein kinase II and protein kinase C: effects on enzyme-mediated DNA cleavage/religation and sensitivity to the antineoplastic drugs etoposide and 4'-(9-acridinylamino)methane-sulfon-m-anisidide.
DeVore RF, Corbett AH, Osheroff N
(1992) Cancer Res 52: 2156-61
MeSH Terms: Amsacrine, Casein Kinase II, DNA, DNA Topoisomerases, Type II, Etoposide, Nucleic Acid Denaturation, Nucleic Acid Renaturation, Phosphorylation, Protein Kinase C, Protein-Serine-Threonine Kinases
Show Abstract · Added March 5, 2014
The effects of serine phosphorylation on the DNA cleavage/religation equilibrium of topoisomerase II and the sensitivity of the enzyme to antineoplastic drugs were characterized. Both casein kinase II and protein kinase C were used for these studies. Each kinase incorporated a maximum of approximately 1.4 phosphate molecules per homodimer of topoisomerase II. When the enzyme was incubated with both kinases simultaneously, phosphate incorporation increased to approximately 2.6 molecules/homodimer. In the absence of antineoplastic drugs, phosphorylation had only a slight effect on the DNA cleavage/religation equilibrium of topoisomerase II. However, in the presence of etoposide or 4'-(9-acridinylamino)methane-sulfon-m-anisidide, phosphorylation attenuated the ability of drugs to stabilize enzyme-DNA cleavage complexes. Levels of drug-induced DNA cleavage products decreased approximately 33% following phosphorylation of topoisomerase II by casein kinase II, approximately 17% following modification by protein kinase C, and approximately 50% following simultaneous phosphorylation of the enzyme by both kinases. This latter 50% reduction in DNA cleavage products correlated with an approximately 2-fold increase in the apparent first order rate constant for DNA religation mediated by simultaneously modified topoisomerase II. These results strongly suggest that the sensitivity of topoisomerase II toward antineoplastic drugs can be modulated by altering the phosphorylation state of the enzyme.
0 Communities
1 Members
0 Resources
10 MeSH Terms