Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 121

Publication Record

Connections

Cellular accumulation and antioxidant activity of acetoxymethoxycarbonyl pyrrolidine nitroxides.
Dikalov SI, Dikalova AE, Morozov DA, Kirilyuk IA
(2018) Free Radic Res 52: 339-350
MeSH Terms: Antioxidants, Cyclic N-Oxides, Electron Spin Resonance Spectroscopy, Mitochondria, Nitrogen Oxides
Show Abstract · Added March 26, 2019
Nitroxides are widely used in biology as antioxidants, spin labels, functional spin probes for pH, oxygen and thiol levels, and tissue redox status imaging using electron paramagnetic resonance (EPR); however, biological applications of nitroxides is hindered by fast bioreduction to EPR-silent hydroxylamines and rapid clearance. In this work, we have studied pyrrolidine nitroxides with acetoxymethoxycarbonyl groups which can undergo hydrolysis by cellular esterases to hydrophilic carboxylate derivatives resistant to bioreduction. Nitroxides containing acetoxymethoxycarbonyl groups were rapidly absorbed by cells from the media, 3,4-bis-(acetoxymethoxycarbonyl)-proxyl (DCP-AM2) and 3-(2-(bis(2-(acetoxymethoxy)-2-oxoethyl)amino)acetamido)-proxyl (DCAP-AM2) showing the strongest EPR signal of the cellular fraction. Remarkably, the EPR parameters of 3,4-dicarboxy-proxyl (DCP) and its mono- and di-acetoxymethyl esters are different, and consequent intracellular hydrolysis of acetoxymethoxycarbonyl groups in DCP-AM2 can be followed by EPR. To elucidate intracellular location of the resultant DCP, the mitochondrial fraction has been isolated. EPR measurements showed that mitochondria were the main place where DCP was finally accumulated. TEMPO derivatives showed expectedly much faster decay of EPR signal in the cellular fraction, compared to pyrrolidine nitroxides. It was found that supplementation of endothelial cells with 50 nM of DCP-AM2 completely normalised the mitochondrial superoxide level. Moreover, administration of DCP-AM2 to mice (1.4 mg/kg/day) resulted in substantial nitroxide accumulation in the tissues and significantly reduced hypertension. We found that hydroxylamine derivatives of dicarboxyproxyl nitroxide DCP-AM-H can be used for the detection of superoxide in vivo in angiotensin II model of hypertension. Infusion of DCP-AM-H in mice leads to accumulation of persistent EPR signal of nitroxide in the blood and vascular tissue in angiotensin II-infused wild-type but not in SOD2 overexpressing mice. Our data demonstrate that acetoxymethoxycarbonyl group containing nitroxides accumulate in mitochondria and demonstrate site-specific antioxidant activity.
0 Communities
1 Members
0 Resources
MeSH Terms
From the Cover: Manganese and Rotenone-Induced Oxidative Stress Signatures Differ in iPSC-Derived Human Dopamine Neurons.
Neely MD, Davison CA, Aschner M, Bowman AB
(2017) Toxicol Sci 159: 366-379
MeSH Terms: Cell Differentiation, Cells, Cultured, Dopaminergic Neurons, Humans, Induced Pluripotent Stem Cells, Lipid Peroxidation, Manganese, Oxidative Stress, Reactive Nitrogen Species, Reactive Oxygen Species, Rotenone
Show Abstract · Added April 11, 2018
Parkinson's disease (PD) is the result of complex interactions between genetic and environmental factors. Two chemically distinct environmental stressors relevant to PD are the metal manganese and the pesticide rotenone. Both are thought to exert neurotoxicity at least in part via oxidative stress resulting from impaired mitochondrial activity. Identifying shared mechanism of action may reveal clues towards an understanding of the mechanisms underlying PD pathogenesis. Here we compare the effects of manganese and rotenone in human-induced pluripotent stem cells-derived postmitotic mesencephalic dopamine neurons by assessing several different oxidative stress endpoints. Manganese, but not rotenone caused a concentration and time-dependent increase in intracellular reactive oxygen/nitrogen species measured by quantifying the fluorescence of oxidized chloromethyl 2',7'-dichlorodihydrofluorescein diacetate (DCF) assay. In contrast, rotenone but not manganese caused an increase in cellular isoprostane levels, an indicator of lipid peroxidation. Manganese and rotenone both caused an initial decrease in cellular reduced glutathione; however, glutathione levels remained low in neurons treated with rotenone for 24 h but recovered in manganese-exposed cells. Neurite length, a sensitive indicator of overall neuronal health was adversely affected by rotenone, but not manganese. Thus, our observations suggest that the cellular oxidative stress evoked by these 2 agents is distinct yielding unique oxidative stress signatures across outcome measures. The protective effect of rasagiline, a compound used in the clinic for PD, had negligible impact on any of oxidative stress outcome measures except a subtle significant decrease in manganese-dependent production of reactive oxygen/nitrogen species detected by the DCF assay.
© The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
11 MeSH Terms
An Interlaboratory Evaluation of Drift Tube Ion Mobility-Mass Spectrometry Collision Cross Section Measurements.
Stow SM, Causon TJ, Zheng X, Kurulugama RT, Mairinger T, May JC, Rennie EE, Baker ES, Smith RD, McLean JA, Hann S, Fjeldsted JC
(2017) Anal Chem 89: 9048-9055
MeSH Terms: Calibration, Ion Mobility Spectrometry, Laboratories, Lipids, Mass Spectrometry, Molecular Structure, Nitrogen, Proteins, Reproducibility of Results
Show Abstract · Added December 17, 2018
Collision cross section (CCS) measurements resulting from ion mobility-mass spectrometry (IM-MS) experiments provide a promising orthogonal dimension of structural information in MS-based analytical separations. As with any molecular identifier, interlaboratory standardization must precede broad range integration into analytical workflows. In this study, we present a reference drift tube ion mobility mass spectrometer (DTIM-MS) where improvements on the measurement accuracy of experimental parameters influencing IM separations provide standardized drift tube, nitrogen CCS values (CCS) for over 120 unique ion species with the lowest measurement uncertainty to date. The reproducibility of these CCS values are evaluated across three additional laboratories on a commercially available DTIM-MS instrument. The traditional stepped field CCS method performs with a relative standard deviation (RSD) of 0.29% for all ion species across the three additional laboratories. The calibrated single field CCS method, which is compatible with a wide range of chromatographic inlet systems, performs with an average, absolute bias of 0.54% to the standardized stepped field CCS values on the reference system. The low RSD and biases observed in this interlaboratory study illustrate the potential of DTIM-MS for providing a molecular identifier for a broad range of discovery based analyses.
1 Communities
1 Members
0 Resources
9 MeSH Terms
Ablation Is Associated With Increased Nitro-Oxidative Stress During Ischemia-Reperfusion Injury: Implications for Human Ischemic Cardiomyopathy.
Zhang B, Novitskaya T, Wheeler DG, Xu Z, Chepurko E, Huttinger R, He H, Varadharaj S, Zweier JL, Song Y, Xu M, Harrell FE, Su YR, Absi T, Kohr MJ, Ziolo MT, Roden DM, Shaffer CM, Galindo CL, Wells QS, Gumina RJ
(2017) Circ Heart Fail 10:
MeSH Terms: Adult, Animals, Calcium Channels, L-Type, Calcium Signaling, Calcium-Binding Proteins, Cardiomyopathies, Case-Control Studies, Disease Models, Animal, Female, Genetic Predisposition to Disease, Humans, Male, Mice, Inbred C57BL, Mice, Knockout, Middle Aged, Myocardial Infarction, Myocardial Reperfusion Injury, Myocardium, Oxidative Stress, Phenotype, Potassium Channels, Inwardly Rectifying, Reactive Nitrogen Species, Reactive Oxygen Species, Sarcoplasmic Reticulum Calcium-Transporting ATPases, Tyrosine, Ventricular Dysfunction, Left, Ventricular Function, Left, Ventricular Pressure
Show Abstract · Added April 6, 2017
BACKGROUND - Despite increased secondary cardiovascular events in patients with ischemic cardiomyopathy (ICM), the expression of innate cardiac protective molecules in the hearts of patients with ICM is incompletely characterized. Therefore, we used a nonbiased RNAseq approach to determine whether differences in cardiac protective molecules occur with ICM.
METHODS AND RESULTS - RNAseq analysis of human control and ICM left ventricular samples demonstrated a significant decrease in expression with ICM. encodes the Kir6.2 subunit of the cardioprotective K channel. Using wild-type mice and -deficient (-null) mice, we examined the effect of expression on cardiac function during ischemia-reperfusion injury. Reactive oxygen species generation increased in -null hearts above that found in wild-type mice hearts after ischemia-reperfusion injury. Continuous left ventricular pressure measurement during ischemia and reperfusion demonstrated a more compromised diastolic function in -null compared with wild-type mice during reperfusion. Analysis of key calcium-regulating proteins revealed significant differences in -null mice. Despite impaired relaxation, -null hearts increased phospholamban Ser16 phosphorylation, a modification that results in the dissociation of phospholamban from sarcoendoplasmic reticulum Ca, thereby increasing sarcoendoplasmic reticulum Ca-mediated calcium reuptake. However, -null mice also had increased 3-nitrotyrosine modification of the sarcoendoplasmic reticulum Ca-ATPase, a modification that irreversibly impairs sarcoendoplasmic reticulum Ca function, thereby contributing to diastolic dysfunction.
CONCLUSIONS - expression is decreased in human ICM. Lack of expression increases peroxynitrite-mediated modification of the key calcium-handling protein sarcoendoplasmic reticulum Ca-ATPase after myocardial ischemia-reperfusion injury, contributing to impaired diastolic function. These data suggest a mechanism for ischemia-induced diastolic dysfunction in patients with ICM.
© 2017 American Heart Association, Inc.
0 Communities
1 Members
0 Resources
28 MeSH Terms
Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement From the American Heart Association.
Griendling KK, Touyz RM, Zweier JL, Dikalov S, Chilian W, Chen YR, Harrison DG, Bhatnagar A, American Heart Association Council on Basic Cardiovascular Sciences
(2016) Circ Res 119: e39-75
MeSH Terms: American Heart Association, Cardiovascular Diseases, Cardiovascular System, Humans, Oxidation-Reduction, Oxidative Stress, Reactive Nitrogen Species, Reactive Oxygen Species, Signal Transduction, United States
Show Abstract · Added March 26, 2019
Reactive oxygen species and reactive nitrogen species are biological molecules that play important roles in cardiovascular physiology and contribute to disease initiation, progression, and severity. Because of their ephemeral nature and rapid reactivity, these species are difficult to measure directly with high accuracy and precision. In this statement, we review current methods for measuring these species and the secondary products they generate and suggest approaches for measuring redox status, oxidative stress, and the production of individual reactive oxygen and nitrogen species. We discuss the strengths and limitations of different methods and the relative specificity and suitability of these methods for measuring the concentrations of reactive oxygen and reactive nitrogen species in cells, tissues, and biological fluids. We provide specific guidelines, through expert opinion, for choosing reliable and reproducible assays for different experimental and clinical situations. These guidelines are intended to help investigators and clinical researchers avoid experimental error and ensure high-quality measurements of these important biological species.
© 2016 American Heart Association, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Evaluation of Collision Cross Section Calibrants for Structural Analysis of Lipids by Traveling Wave Ion Mobility-Mass Spectrometry.
Hines KM, May JC, McLean JA, Xu L
(2016) Anal Chem 88: 7329-36
MeSH Terms: Calibration, Ions, Nitrogen, Peptides, Phosphatidylcholines, Phosphatidylethanolamines, Spectrometry, Mass, Electrospray Ionization
Show Abstract · Added December 17, 2018
Collision cross section (CCS) measurement of lipids using traveling wave ion mobility-mass spectrometry (TWIM-MS) is of high interest to the lipidomics field. However, currently available calibrants for CCS measurement using TWIM are predominantly peptides that display quite different physical properties and gas-phase conformations from lipids, which could lead to large CCS calibration errors for lipids. Here we report the direct CCS measurement of a series of phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) in nitrogen using a drift tube ion mobility (DTIM) instrument and an evaluation of the accuracy and reproducibility of PCs and PEs as CCS calibrants for phospholipids against different classes of calibrants, including polyalanine (PolyAla), tetraalkylammonium salts (TAA), and hexakis(fluoroalkoxy)phosphazines (HFAP), in both positive and negative modes in TWIM-MS analysis. We demonstrate that structurally mismatched calibrants lead to larger errors in calibrated CCS values while the structurally matched calibrants, PCs and PEs, gave highly accurate and reproducible CCS values at different traveling wave parameters. Using the lipid calibrants, the majority of the CCS values of several classes of phospholipids measured by TWIM are within 2% error of the CCS values measured by DTIM. The development of phospholipid CCS calibrants will enable high-accuracy structural studies of lipids and add an additional level of validation in the assignment of identifications in untargeted lipidomics experiments.
0 Communities
1 Members
0 Resources
MeSH Terms
Raloxifene improves skeletal properties in an animal model of cystic chronic kidney disease.
Newman CL, Creecy A, Granke M, Nyman JS, Tian N, Hammond MA, Wallace JM, Brown DM, Chen N, Moe SM, Allen MR
(2016) Kidney Int 89: 95-104
MeSH Terms: Animals, Blood Urea Nitrogen, Bone Density Conservation Agents, Bone Remodeling, Collagen, Disease Models, Animal, Femur, Male, Mechanical Phenomena, Parathyroid Hormone, Polycystic Kidney, Autosomal Dominant, Raloxifene Hydrochloride, Rats, Renal Insufficiency, Chronic, Spine
Show Abstract · Added November 23, 2015
Patients with chronic kidney disease (CKD) have an increased risk of fracture. Raloxifene is a mild antiresorptive agent that reduces fracture risk in the general population. Here we assessed the impact of raloxifene on the skeletal properties of animals with progressive CKD. Male Cy/+ rats that develop autosomal dominant cystic kidney disease were treated with either vehicle or raloxifene for five weeks. They were assessed for changes in mineral metabolism and skeletal parameters (microCT, histology, whole-bone mechanics, and material properties). Their normal littermates served as controls. Animals with CKD had significantly higher parathyroid hormone levels compared with normal controls, as well as inferior structural and mechanical skeletal properties. Raloxifene treatment resulted in lower bone remodeling rates and higher cancellous bone volume in the rats with CKD. Although it had little effect on cortical bone geometry, it resulted in higher energy to fracture and modulus of toughness values than vehicle-treated rats with CKD, achieving levels equivalent to normal controls. Animals treated with raloxifene had superior tissue-level mechanical properties as assessed by nanoindentation, and higher collagen D-periodic spacing as assessed by atomic force microscopy. Thus, raloxifene can positively impact whole-bone mechanical properties in CKD through its impact on skeletal material properties.
Copyright © 2015 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
1 Communities
2 Members
0 Resources
15 MeSH Terms
Characterization of nitrogen mustard formamidopyrimidine adduct formation of bis(2-chloroethyl)ethylamine with calf thymus DNA and a human mammary cancer cell line.
Gruppi F, Hejazi L, Christov PP, Krishnamachari S, Turesky RJ, Rizzo CJ
(2015) Chem Res Toxicol 28: 1850-60
MeSH Terms: Animals, Cattle, Cell Line, Tumor, DNA, Humans, Mechlorethamine, Nitrogen Mustard Compounds, Pyrimidines, Thymus Gland
Show Abstract · Added January 7, 2016
A robust, quantitative ultraperformance liquid chromatography ion trap multistage scanning mass spectrometric (UPLC/MS(3)) method was established to characterize and measure five guanine adducts formed by reaction of the chemotherapeutic nitrogen mustard (NM) bis(2-chloroethyl)ethylamine with calf thymus (CT) DNA. In addition to the known N7-guanine (NM-G) adduct and its cross-link (G-NM-G), the ring-opened formamidopyrimidine (FapyG) monoadduct (NM-FapyG) and cross-links in which one (FapyG-NM-G) or both (FapyG-NM-FapyG) guanines underwent ring-opening to FapyG units were identified. Authentic standards of all adducts were synthesized and characterized by NMR and mass spectrometry. These adducts were quantified in CT DNA treated with NM (1 μM) as their deglycosylated bases. A two-stage neutral thermal hydrolysis was developed to mitigate the artifactual formation of ring-opened FapyG adducts involving hydrolysis of the cationic adduct at 37 °C, followed by hydrolysis of the FapyG adducts at 95 °C. The limit of quantification values ranged between 0.3 and 1.6 adducts per 10(7) DNA bases when the equivalent of 5 μg of DNA hydrolysate was assayed on column. The principal adduct formed was the G-NM-G cross-link, followed by the NM-G monoadduct; the FapyG-NM-G cross-link adduct; and the FapyG-NM-FapyG was below the limit of detection. The NM-FapyG adducts were formed in CT DNA at a level ∼20% that of the NM-G adduct. NM-FapyG has not been previously quanitified, and the FapyG-NM-G and FapyG-NM-FapyG adducts have not been previously characterized. Our validated analytical method was then applied to measure DNA adduct formation in the MDA-MB-231 mammary tumor cell line exposed to NM (100 μM) for 24 h. The major adduct formed was NM-G (970 adducts per 10(7) bases), followed by G-NM-G (240 adducts per 10(7) bases), NM-FapyG (180 adducts per 10(7) bases), and, last, the FapyG-NM-G cross-link adduct (6.0 adducts per 10(7) bases). These lesions are expected to contribute to NM-mediated toxicity and genotoxicity in vivo.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Solution NMR Structure Determination of Polytopic α-Helical Membrane Proteins: A Guide to Spin Label Paramagnetic Relaxation Enhancement Restraints.
Columbus L, Kroncke B
(2015) Methods Enzymol 557: 329-48
MeSH Terms: Animals, Humans, Models, Molecular, Nitrogen Oxides, Nuclear Magnetic Resonance, Biomolecular, Protein Structure, Secondary, Proteins, Spin Labels
Show Abstract · Added March 26, 2019
Solution nuclear magnetic resonance structures of polytopic α-helical membrane proteins require additional restraints beyond the traditional Nuclear Overhauser Effect (NOE) restraints. Several methods have been developed and this review focuses on paramagnetic relaxation enhancement (PRE). Important aspects of spin labeling, PRE measurements, structure calculations, and structural quality are discussed.
© 2015 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Clustering of two genes putatively involved in cyanate detoxification evolved recently and independently in multiple fungal lineages.
Elmore MH, McGary KL, Wisecaver JH, Slot JC, Geiser DM, Sink S, O'Donnell K, Rokas A
(2015) Genome Biol Evol 7: 789-800
MeSH Terms: Ascomycota, Carbon-Nitrogen Lyases, Carbonic Anhydrases, Cyanates, Evolution, Molecular, Fusarium, Gene Duplication, Gene Transfer, Horizontal, Genes, Fungal, Multigene Family, Phylogeny
Show Abstract · Added February 19, 2015
Fungi that have the enzymes cyanase and carbonic anhydrase show a limited capacity to detoxify cyanate, a fungicide employed by both plants and humans. Here, we describe a novel two-gene cluster that comprises duplicated cyanase and carbonic anhydrase copies, which we name the CCA gene cluster, trace its evolution across Ascomycetes, and examine the evolutionary dynamics of its spread among lineages of the Fusarium oxysporum species complex (hereafter referred to as the FOSC), a cosmopolitan clade of purportedly clonal vascular wilt plant pathogens. Phylogenetic analysis of fungal cyanase and carbonic anhydrase genes reveals that the CCA gene cluster arose independently at least twice and is now present in three lineages, namely Cochliobolus lunatus, Oidiodendron maius, and the FOSC. Genome-wide surveys within the FOSC indicate that the CCA gene cluster varies in copy number across isolates, is always located on accessory chromosomes, and is absent in FOSC's closest relatives. Phylogenetic reconstruction of the CCA gene cluster in 163 FOSC strains from a wide variety of hosts suggests a recent history of rampant transfers between isolates. We hypothesize that the independent formation of the CCA gene cluster in different fungal lineages and its spread across FOSC strains may be associated with resistance to plant-produced cyanates or to use of cyanate fungicides in agriculture.
© The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
0 Communities
2 Members
0 Resources
11 MeSH Terms