Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 12

Publication Record

Connections

Cellular accumulation and antioxidant activity of acetoxymethoxycarbonyl pyrrolidine nitroxides.
Dikalov SI, Dikalova AE, Morozov DA, Kirilyuk IA
(2018) Free Radic Res 52: 339-350
MeSH Terms: Antioxidants, Cyclic N-Oxides, Electron Spin Resonance Spectroscopy, Mitochondria, Nitrogen Oxides
Show Abstract · Added March 26, 2019
Nitroxides are widely used in biology as antioxidants, spin labels, functional spin probes for pH, oxygen and thiol levels, and tissue redox status imaging using electron paramagnetic resonance (EPR); however, biological applications of nitroxides is hindered by fast bioreduction to EPR-silent hydroxylamines and rapid clearance. In this work, we have studied pyrrolidine nitroxides with acetoxymethoxycarbonyl groups which can undergo hydrolysis by cellular esterases to hydrophilic carboxylate derivatives resistant to bioreduction. Nitroxides containing acetoxymethoxycarbonyl groups were rapidly absorbed by cells from the media, 3,4-bis-(acetoxymethoxycarbonyl)-proxyl (DCP-AM2) and 3-(2-(bis(2-(acetoxymethoxy)-2-oxoethyl)amino)acetamido)-proxyl (DCAP-AM2) showing the strongest EPR signal of the cellular fraction. Remarkably, the EPR parameters of 3,4-dicarboxy-proxyl (DCP) and its mono- and di-acetoxymethyl esters are different, and consequent intracellular hydrolysis of acetoxymethoxycarbonyl groups in DCP-AM2 can be followed by EPR. To elucidate intracellular location of the resultant DCP, the mitochondrial fraction has been isolated. EPR measurements showed that mitochondria were the main place where DCP was finally accumulated. TEMPO derivatives showed expectedly much faster decay of EPR signal in the cellular fraction, compared to pyrrolidine nitroxides. It was found that supplementation of endothelial cells with 50 nM of DCP-AM2 completely normalised the mitochondrial superoxide level. Moreover, administration of DCP-AM2 to mice (1.4 mg/kg/day) resulted in substantial nitroxide accumulation in the tissues and significantly reduced hypertension. We found that hydroxylamine derivatives of dicarboxyproxyl nitroxide DCP-AM-H can be used for the detection of superoxide in vivo in angiotensin II model of hypertension. Infusion of DCP-AM-H in mice leads to accumulation of persistent EPR signal of nitroxide in the blood and vascular tissue in angiotensin II-infused wild-type but not in SOD2 overexpressing mice. Our data demonstrate that acetoxymethoxycarbonyl group containing nitroxides accumulate in mitochondria and demonstrate site-specific antioxidant activity.
0 Communities
1 Members
0 Resources
MeSH Terms
Solution NMR Structure Determination of Polytopic α-Helical Membrane Proteins: A Guide to Spin Label Paramagnetic Relaxation Enhancement Restraints.
Columbus L, Kroncke B
(2015) Methods Enzymol 557: 329-48
MeSH Terms: Animals, Humans, Models, Molecular, Nitrogen Oxides, Nuclear Magnetic Resonance, Biomolecular, Protein Structure, Secondary, Proteins, Spin Labels
Show Abstract · Added March 26, 2019
Solution nuclear magnetic resonance structures of polytopic α-helical membrane proteins require additional restraints beyond the traditional Nuclear Overhauser Effect (NOE) restraints. Several methods have been developed and this review focuses on paramagnetic relaxation enhancement (PRE). Important aspects of spin labeling, PRE measurements, structure calculations, and structural quality are discussed.
© 2015 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
HNO enhances SERCA2a activity and cardiomyocyte function by promoting redox-dependent phospholamban oligomerization.
Sivakumaran V, Stanley BA, Tocchetti CG, Ballin JD, Caceres V, Zhou L, Keceli G, Rainer PP, Lee DI, Huke S, Ziolo MT, Kranias EG, Toscano JP, Wilson GM, O'Rourke B, Kass DA, Mahaney JE, Paolocci N
(2013) Antioxid Redox Signal 19: 1185-97
MeSH Terms: Adenosine Triphosphate, Animals, Antioxidants, Calcium, Calcium Signaling, Calcium-Binding Proteins, Cardiotonic Agents, Cyclic AMP-Dependent Protein Kinases, Disulfides, Heart Ventricles, In Vitro Techniques, Mice, Mice, Knockout, Microsomes, Myocytes, Cardiac, Nitrogen Oxides, Oxidation-Reduction, Phosphorylation, Protein Binding, Protein Conformation, Protein Interaction Domains and Motifs, Protein Multimerization, Protein Stability, Sarcoplasmic Reticulum, Sarcoplasmic Reticulum Calcium-Transporting ATPases
Show Abstract · Added May 27, 2014
AIMS - Nitroxyl (HNO) interacts with thiols to act as a redox-sensitive modulator of protein function. It enhances sarcoplasmic reticular Ca(2+) uptake and myofilament Ca(2+) sensitivity, improving cardiac contractility. This activity has led to clinical testing of HNO donors for heart failure. Here we tested whether HNO alters the inhibitory interaction between phospholamban (PLN) and the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) in a redox-dependent manner, improving Ca(2+) handling in isolated myocytes/hearts.
RESULTS - Ventriculocytes, sarcoplasmic reticulum (SR) vesicles, and whole hearts were isolated from control (wildtype [WT]) or PLN knockout (pln(-/-)) mice. Compared to WT, pln(-/-) myocytes displayed enhanced resting sarcomere shortening, peak Ca(2+) transient, and blunted β-adrenergic responsiveness. HNO stimulated shortening, relaxation, and Ca(2+) transient in WT cardiomyocytes, and evoked positive inotropy/lusitropy in intact hearts. These changes were markedly blunted in pln(-/-) cells/hearts. HNO enhanced SR Ca(2+) uptake in WT but not pln(-/-) SR-vesicles. Spectroscopic studies in insect cell microsomes expressing SERCA2a±PLN showed that HNO increased Ca(2+)-dependent SERCA2a conformational flexibility but only when PLN was present. In cardiomyocytes, HNO achieved this effect by stabilizing PLN in an oligomeric disulfide bond-dependent configuration, decreasing the amount of free inhibitory monomeric PLN available.
INNOVATION - HNO-dependent redox changes in myocyte PLN oligomerization relieve PLN inhibition of SERCA2a.
CONCLUSIONS - PLN plays a central role in HNO-induced enhancement of SERCA2a activity, leading to increased inotropy/lusitropy in intact myocytes and hearts. PLN remains physically associated with SERCA2a; however, less monomeric PLN is available resulting in decreased inhibition of the enzyme. These findings offer new avenues to improve Ca(2+) handling in failing hearts.
0 Communities
1 Members
0 Resources
25 MeSH Terms
Nitroxyl improves cellular heart function by directly enhancing cardiac sarcoplasmic reticulum Ca2+ cycling.
Tocchetti CG, Wang W, Froehlich JP, Huke S, Aon MA, Wilson GM, Di Benedetto G, O'Rourke B, Gao WD, Wink DA, Toscano JP, Zaccolo M, Bers DM, Valdivia HH, Cheng H, Kass DA, Paolocci N
(2007) Circ Res 100: 96-104
MeSH Terms: Adenosine Triphosphate, Animals, Biological Transport, Calcium, Calcium-Transporting ATPases, Cells, Cultured, Mice, Mice, Inbred C57BL, Myocardial Contraction, Myocardium, Myocytes, Cardiac, Nitrites, Nitrogen Oxides, Ryanodine Receptor Calcium Release Channel, Sarcoplasmic Reticulum, Sulfhydryl Compounds
Show Abstract · Added May 27, 2014
Heart failure remains a leading cause of morbidity and mortality worldwide. Although depressed pump function is common, development of effective therapies to stimulate contraction has proven difficult. This is thought to be attributable to their frequent reliance on cAMP stimulation to increase activator Ca(2+). A potential alternative is nitroxyl (HNO), the 1-electron reduction product of nitric oxide (NO) that improves contraction and relaxation in normal and failing hearts in vivo. The mechanism for myocyte effects remains unknown. Here, we show that this activity results from a direct interaction of HNO with the sarcoplasmic reticulum Ca(2+) pump and the ryanodine receptor 2, leading to increased Ca(2+) uptake and release from the sarcoplasmic reticulum. HNO increases the open probability of isolated ryanodine-sensitive Ca(2+)-release channels and accelerates Ca(2+) reuptake into isolated sarcoplasmic reticulum by stimulating ATP-dependent Ca(2+) transport. Contraction improves with no net rise in diastolic calcium. These changes are not induced by NO, are fully reversible by addition of reducing agents (redox sensitive), and independent of both cAMP/protein kinase A and cGMP/protein kinase G signaling. Rather, the data support HNO/thiolate interactions that enhance the activity of intracellular Ca(2+) cycling proteins. These findings suggest HNO donors are attractive candidates for the pharmacological treatment of heart failure.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Dipolar coupling between nitroxide spin labels: the development and application of a tether-in-a-cone model.
Hustedt EJ, Stein RA, Sethaphong L, Brandon S, Zhou Z, Desensi SC
(2006) Biophys J 90: 340-56
MeSH Terms: Anisotropy, Bacteriophage T4, Biophysics, Computer Simulation, Cyclic N-Oxides, Electron Spin Resonance Spectroscopy, Fourier Analysis, Models, Statistical, Muramidase, Nitric Oxide, Nitrogen Oxides, Normal Distribution, Software, Spin Labels, Thermodynamics
Show Abstract · Added February 20, 2013
A tether-in-a-cone model is developed for the simulation of electron paramagnetic resonance spectra of dipolar coupled nitroxide spin labels attached to tethers statically disordered within cones of variable halfwidth. In this model, the nitroxides adopt a range of interprobe distances and orientations. The aim is to develop tools for determining both the distance distribution and the relative orientation of the labels from experimental spectra. Simulations demonstrate the sensitivity of electron paramagnetic resonance spectra to the orientation of the cones as a function of cone halfwidth and other parameters. For small cone halfwidths (< approximately 40 degrees ), simulated spectra are strongly dependent on the relative orientation of the cones. For larger cone halfwidths, spectra become independent of cone orientation. Tether-in-a-cone model simulations are analyzed using a convolution approach based on Fourier transforms. Spectra obtained by the Fourier convolution method more closely fit the tether-in-a-cone simulations as the halfwidth of the cone increases. The Fourier convolution method gives a reasonable estimate of the correct average distance, though the distance distribution obtained can be significantly distorted. Finally, the tether-in-a-cone model is successfully used to analyze experimental spectra from T4 lysozyme. These results demonstrate the utility of the model and highlight directions for further development.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Nitric oxide-induced oxidant stress in endothelial cells: amelioration by ascorbic acid.
May JM, Qu ZC
(2004) Arch Biochem Biophys 429: 106-13
MeSH Terms: Ascorbic Acid, Cell Line, Dose-Response Relationship, Drug, Endothelial Cells, Humans, Nitric Oxide, Nitrogen Oxides, Oxidative Stress, Spermine
Show Abstract · Added December 10, 2013
Nitric oxide has multiple beneficial effects in the blood vessel wall. However, high concentrations of nitric oxide in the presence of hydroperoxides have been shown to damage cultured cells. In this work, the effect of relatively high concentrations of nitric oxide alone on the function and antioxidant status of a human endothelial cell line (EA.hy926) was tested. Nitric oxide generated from 0.1 to 0.5mM spermine NONOate generated reactive species in the cells detected by triazole formation from diaminofluorescein and by oxidation of dihydrofluorescein. Intracellular ascorbic acid decreased this oxidant stress. Spermine NONOate also decreased intracellular ascorbate concentrations, although reduced glutathione was not affected unless cells had also been caused to reduce dehydroascorbic acid to ascorbate. Nitric oxide predictably inhibited both endothelial nitric oxide synthase and glyceraldehyde 3-phosphate dehydrogenase, and ascorbate partially prevented inhibition of the latter enzyme. These results suggest that relatively high concentrations of nitric oxide can cause oxidant stress in endothelial cells that is ameliorated by ascorbic acid.
0 Communities
1 Members
0 Resources
9 MeSH Terms
The sensitivity of saturation transfer electron paramagnetic resonance spectra to restricted amplitude uniaxial rotational diffusion.
Hustedt EJ, Beth AH
(2001) Biophys J 81: 3156-65
MeSH Terms: Algorithms, Diffusion, Electron Spin Resonance Spectroscopy, Least-Squares Analysis, Microwaves, Nitrogen Oxides, Software
Show Abstract · Added February 23, 2015
Computational methods have been developed to model the effects of constrained or restricted amplitude uniaxial rotational diffusion (URD) on saturation transfer electron paramagnetic resonance (ST-EPR) signals observed from nitroxide spin labels. These methods, which have been developed to model the global rotational motion of intrinsic membrane proteins that can interact with the cytoskeleton or other peripheral proteins, are an extension of previous work that described computationally efficient algorithms for calculating ST-EPR spectra for unconstrained URD (Hustedt and Beth, 1995, Biophys. J. 69:1409-1423). Calculations are presented that demonstrate the dependence of the ST-EPR signal (V'(2)) on the width (Delta) of a square-well potential as a function of the microwave frequency, the correlation time for URD, and the orientation of the spin-label with respect to the URD axis. At a correlation time of 10 micros, the V'(2) signal is very sensitive to Delta in the range from 0 to 60 degrees, marginally sensitive from 60 degrees to 90 degrees, and insensitive beyond 90 degrees. Sensitivity to Delta depends on the correlation time for URD with higher sensitivity to large values of Delta at the shorter correlation times, on the microwave frequency, and on the orientation of the spin-label relative to the URD axis. The computational algorithm has been incorporated into a global nonlinear least-squares analysis approach, based upon the Marquardt-Levenberg method (Blackman et al., 2001, Biophys. J. 81:3363-3376). This has permitted determination of the correlation time for URD and the width of the square-well potential by automated fitting of experimental ST-EPR data sets obtained from a spin-labeled membrane protein and provided a new automated method for analysis of data obtained from any system that exhibits restricted amplitude URD.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Reassignment of organic peroxyl radical adducts.
Dikalov SI, Mason RP
(1999) Free Radic Biol Med 27: 864-72
MeSH Terms: Chloride Peroxidase, Computer Simulation, Cyclic N-Oxides, Electron Spin Resonance Spectroscopy, Free Radicals, Hydrogen Peroxide, Iron, Nitrogen Oxides, Oxygen Isotopes, Peroxides, Spin Labels, Superoxides, tert-Butylhydroperoxide
Show Abstract · Added March 26, 2019
The study of the important role of peroxyl radicals in biological systems is limited by their difficult detection with direct electron spin resonance (ESR). Many ESR spectra were assigned to 5,5-dimethyl-1-pyrroline N-oxide (DMPO)/peroxyl radical adducts based only on the close similarity of their ESR spectra to that of DMPO/superoxide radical adduct in conjunction with their insensitivity to superoxide dismutase, which distinguishes the radical adduct from DMPO/superoxide radical adduct. Later, the spin-trapping literature reported that DMPO/peroxyl radical adducts have virtually the same hyperfine coupling constants as synthesized alkoxyl radical adducts, raising the issue of the correct assignment of peroxyl radical adducts. However, using 17O-isotope labelling, the methylperoxyl and methoxyl radical adducts should be distinguishable. We have reinvestigated the spin trapping of the methylperoxyl radical. The methylperoxyl radical was generated in aerobic solution with 17O-molecular oxygen either in a Fenton system with dimethylsulfoxide or in a chloroperoxidase system with tert-butyl hydroperoxide. Two different spin traps, DMPO and 2,2,4-trimethyl-2H-imidazole-1-oxide (TMIO), were used to trap methylperoxyl radical. 17O-labelled methanol was used to synthesize methoxyl radical adducts by nucleophylic addition. It was shown that the 17O hyperfine coupling constants of radical adducts formed in methylperoxyl radical-generating systems are identical to that of the methoxyl radical adduct. Therefore, methylperoxyl radical-producing systems form detectable methoxyl radical adduct, but not detectable methylperoxyl radical adducts at room temperature. One of the possible mechanisms is the decomposition of peroxyl radical adduct with the formation of secondary alkoxyl radical adduct. These results allow us to reinterpret previously published data reporting detection of peroxyl radical adducts. We suggest that detection of 17O-alkoxyl radical adduct from 17O-labelled molecular oxygen can be used as indirect evidence for peroxyl radical generation.
0 Communities
1 Members
0 Resources
MeSH Terms
Amyloid beta peptides do not form peptide-derived free radicals spontaneously, but can enhance metal-catalyzed oxidation of hydroxylamines to nitroxides.
Dikalov SI, Vitek MP, Maples KR, Mason RP
(1999) J Biol Chem 274: 9392-9
MeSH Terms: Amyloid beta-Peptides, Butanes, Catalysis, Chromatography, High Pressure Liquid, Copper, Cyclic N-Oxides, Ferric Compounds, Free Radicals, Hydroxylamines, Metals, Nitrogen Oxides, Oxidation-Reduction, Piperidines, Spin Labels
Show Abstract · Added March 26, 2019
Amyloid beta (Abeta) peptides play an important role in the pathogenesis of Alzheimer's disease. Free radical generation by Abeta peptides was suggested to be a key mechanism of their neurotoxicity. Reports that neurotoxic free radicals derived from Abeta-(1-40) and Abeta-(25-35) peptides react with the spin trap N-tert-butyl-alpha-phenylnitrone (PBN) to form a PBN/.Abeta peptide radical adduct with a specific triplet ESR signal assert that the peptide itself was the source of free radicals. We now report that three Abeta peptides, Abeta-(1-40), Abeta-(25-35), and Abeta-(40-1), do not yield radical adducts with PBN from the Oklahoma Medical Research Foundation (OMRF). In contrast to OMRF PBN, incubation of Sigma PBN in phosphate buffer without Abeta peptides produced a three-line ESR spectrum. It was shown that this nitroxide is di-tert-butylnitroxide and is formed in the Sigma PBN solution as a result of transition metal-catalyzed auto-oxidation of the respective hydroxylamine present as an impurity in the Sigma PBN. Under some conditions, incubation of PBN from Sigma with Abeta-(1-40) or Abeta-(25-35) can stimulate the formation of di-tert-butylnitroxide. It was shown that Abeta peptides enhanced oxidation of cyclic hydroxylamine 1-hydroxy-4-oxo-2,2,6, 6-tetramethylpiperidine (TEMPONE-H), which was strongly inhibited by the treatment of phosphate buffer with Chelex-100. It was shown that ferric and cupric ions are effective oxidants of TEMPONE-H. The data obtained allow us to conclude that under some conditions toxic Abeta peptides Abeta-(1-40) and Abeta-(25-35) enhance metal-catalyzed oxidation of hydroxylamine derivatives, but do not spontaneously form peptide-derived free radicals.
0 Communities
1 Members
0 Resources
MeSH Terms
Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta.
Minor RL, Myers PR, Guerra R, Bates JN, Harrison DG
(1990) J Clin Invest 86: 2109-16
MeSH Terms: Animals, Aorta, Arginine, Arteriosclerosis, Calcimycin, Cholesterol, Diet, Atherogenic, Luminescent Measurements, Nitric Oxide, Nitrogen Oxides, Rabbits, Time Factors, omega-N-Methylarginine
Show Abstract · Added December 10, 2013
We examined the hypothesis that impaired endothelium-dependent vasodilation in atherosclerosis is associated with decreased synthesis of nitrogen oxides by the vascular endothelium. The descending thoracic aortae of rabbits fed either normal diet, a high cholesterol diet for 2-5 wk (hypercholesterolemic, HC), or a high cholesterol diet for 6 mo (atherosclerotic, AS) were perfused in a bioassay organ chamber with physiologic buffer containing indomethacin. Despite a dramatic impairment in the vasodilator activity of endothelium-dependent relaxing factor (EDRF) released from both HC and AS aortae (assessed by bioassay), the release of nitrogen oxides (measured by chemiluminescence) from these vessels was not reduced, but markedly increased compared to NL. Thus, impaired endothelium-dependent relaxation in atherosclerosis is neither due to decreased activity of the enzyme responsible for the production of nitrogen oxides from arginine nor to arginine deficiency. Because the production of nitrogen oxides increased in response to acetylcholine in both hypercholesterolemic and atherosclerotic vessels, impairments in signal transduction are not responsible for abnormal endothelium-dependent relaxations. Impaired vasodilator activity of EDRF by cholesterol feeding may result from loss of incorporation of nitric oxide into a more potent parent compound, or accelerated degradation of EDRF.
1 Communities
1 Members
0 Resources
13 MeSH Terms