Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 168

Publication Record

Connections

Microvascular disease confers additional risk to COVID-19 infection.
Bale BF, Doneen AL, Vigerust DJ
(2020) Med Hypotheses 144: 109999
MeSH Terms: Adult, Aging, COVID-19, Cardiovascular Diseases, Child, Diabetes Mellitus, Disease Susceptibility, Humans, Hydrogen Peroxide, Hypertension, Hypochlorous Acid, Immunity, Innate, Lung, Microcirculation, Microvessels, Neutrophils, Pandemics, Peroxidase, Risk Factors, United States
Show Abstract · Added June 25, 2020
The majority of fatalities thus far in the COVID-19 pandemic have been attributed to pneumonia. As expected, the fatality rate reported in China is higher in people with chronic pulmonary disease (6.3%) and those who have cancer (5.6%). According to the American College of Cardiology Clinical Bulletin "COVID-19 Clinical Guidance for the CV Care Team", there is a significantly higher fatality rate in people who are elderly (8.0% 70-79 years; 14.8% ≥80 years), diabetic (7.3%), hypertensive (6.0%), or have known cardiovascular disease (CVD) (10.5%). We propose a biological reason for the higher mortality risk in these populations that is apparent. We further present a set of pathophysiological reasons for the heightened danger that could lead to therapies for enhanced management and prevention.
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Arachidonic Acid Kills Staphylococcus aureus through a Lipid Peroxidation Mechanism.
Beavers WN, Monteith AJ, Amarnath V, Mernaugh RL, Roberts LJ, Chazin WJ, Davies SS, Skaar EP
(2019) mBio 10:
MeSH Terms: Animals, Anti-Bacterial Agents, Arachidonic Acid, Brain, Dose-Response Relationship, Drug, Drug Resistance, Bacterial, Female, Kidney, Lipid Peroxidation, Lipids, Mice, Mice, Inbred BALB C, Microbial Sensitivity Tests, Mutation, Neutrophils, Oxidative Stress, Reactive Oxygen Species, Spleen, Staphylococcal Infections, Staphylococcus aureus, Teichoic Acids
Show Abstract · Added March 11, 2020
infects every niche of the human host. In response to microbial infection, vertebrates have an arsenal of antimicrobial compounds that inhibit bacterial growth or kill bacterial cells. One class of antimicrobial compounds consists of polyunsaturated fatty acids, which are highly abundant in eukaryotes and encountered by at the host-pathogen interface. Arachidonic acid (AA) is one of the most abundant polyunsaturated fatty acids in vertebrates and is released in large amounts during the oxidative burst. Most of the released AA is converted to bioactive signaling molecules, but, independently of its role in inflammatory signaling, AA is toxic to Here, we report that AA kills through a lipid peroxidation mechanism whereby AA is oxidized to reactive electrophiles that modify macromolecules, eliciting toxicity. This process is rescued by cotreatment with antioxidants as well as in a strain genetically inactivated for (USA300 mutant) that produces lower levels of reactive oxygen species. However, resistance to AA stress in the USA300 mutant comes at a cost, making the mutant more susceptible to β-lactam antibiotics and attenuated for pathogenesis in a murine infection model compared to the parental methicillin-resistant (MRSA) strain, indicating that resistance to AA toxicity increases susceptibility to other stressors encountered during infection. This report defines the mechanism by which AA is toxic to and identifies lipid peroxidation as a pathway that can be modulated for the development of future therapeutics to treat infections. Despite the ability of the human immune system to generate a plethora of molecules to control infections, is among the pathogens with the greatest impact on human health. One class of host molecules toxic to consists of polyunsaturated fatty acids. Here, we investigated the antibacterial properties of arachidonic acid, one of the most abundant polyunsaturated fatty acids in humans, and discovered that the mechanism of toxicity against proceeds through lipid peroxidation. A better understanding of the molecular mechanisms by which the immune system kills , and by which avoids host killing, will enable the optimal design of therapeutics that complement the ability of the vertebrate immune response to eliminate infections.
Copyright © 2019 Beavers et al.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Myeloablation followed by autologous stem cell transplantation normalises systemic sclerosis molecular signatures.
Assassi S, Wang X, Chen G, Goldmuntz E, Keyes-Elstein L, Ying J, Wallace PK, Turner J, Zheng WJ, Pascual V, Varga J, Hinchcliff ME, Bellocchi C, McSweeney P, Furst DE, Nash RA, Crofford LJ, Welch B, Pinckney A, Mayes MD, Sullivan KM
(2019) Ann Rheum Dis 78: 1371-1378
MeSH Terms: Adult, Cyclophosphamide, Down-Regulation, Female, Hematopoietic Stem Cell Transplantation, Humans, Interferons, Male, Middle Aged, Multilevel Analysis, Myeloablative Agonists, Neutrophils, Randomized Controlled Trials as Topic, Scleroderma, Systemic, Transcriptome, Transplantation Conditioning, Transplantation, Autologous, Treatment Outcome, Up-Regulation
Show Abstract · Added March 25, 2020
OBJECTIVE - In the randomised scleroderma: Cyclophosphamide Or Transplantation (SCOT trial) (NCT00114530), myeloablation, followed by haematopoietic stem cell transplantation (HSCT), led to improved clinical outcomes compared with monthly cyclophosphamide (CYC) treatment in systemic sclerosis (SSc). Herein, the study aimed to determine global molecular changes at the whole blood transcript and serum protein levels ensuing from HSCT in comparison to intravenous monthly CYC in 62 participants enrolled in the SCOT study.
METHODS - Global transcript studies were performed at pretreatment baseline, 8 months and 26 months postrandomisation using Illumina HT-12 arrays. Levels of 102 proteins were measured in the concomitantly collected serum samples.
RESULTS - At the baseline visit, interferon (IFN) and neutrophil transcript modules were upregulated and the cytotoxic/NK module was downregulated in SSc compared with unaffected controls. A paired comparison of the 26 months to the baseline samples revealed a significant decrease of the IFN and neutrophil modules and an increase in the cytotoxic/NK module in the HSCT arm while there was no significant change in the CYC control arm. Also, a composite score of correlating serum proteins with IFN and neutrophil transcript modules, as well as a multilevel analysis showed significant changes in SSc molecular signatures after HSCT while similar changes were not observed in the CYC arm. Lastly, a decline in the IFN and neutrophil modules was associated with an improvement in pulmonary forced vital capacity and an increase in the cytotoxic/NK module correlated with improvement in skin score.
CONCLUSION - HSCT contrary to conventional treatment leads to a significant 'correction' in disease-related molecular signatures.
© Author(s) (or their employer(s)) 2019. No commercial re-use. See rights and permissions. Published by BMJ.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Nonsteroidal Anti-inflammatory Drugs Alter the Microbiota and Exacerbate Colitis while Dysregulating the Inflammatory Response.
Maseda D, Zackular JP, Trindade B, Kirk L, Roxas JL, Rogers LM, Washington MK, Du L, Koyama T, Viswanathan VK, Vedantam G, Schloss PD, Crofford LJ, Skaar EP, Aronoff DM
(2019) mBio 10:
MeSH Terms: Animals, Anti-Inflammatory Agents, Non-Steroidal, CD4-Positive T-Lymphocytes, Clostridium Infections, Gastrointestinal Microbiome, Indomethacin, Intestinal Mucosa, Mice, Neutrophils, Prostaglandins, Survival Analysis
Show Abstract · Added April 7, 2019
infection (CDI) is a major public health threat worldwide. The use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with enhanced susceptibility to and severity of CDI; however, the mechanisms driving this phenomenon have not been elucidated. NSAIDs alter prostaglandin (PG) metabolism by inhibiting cyclooxygenase (COX) enzymes. Here, we found that treatment with the NSAID indomethacin prior to infection altered the microbiota and dramatically increased mortality and the intestinal pathology associated with CDI in mice. We demonstrated that in -infected animals, indomethacin treatment led to PG deregulation, an altered proinflammatory transcriptional and protein profile, and perturbed epithelial cell junctions. These effects were paralleled by increased recruitment of intestinal neutrophils and CD4 cells and also by a perturbation of the gut microbiota. Together, these data implicate NSAIDs in the disruption of protective COX-mediated PG production during CDI, resulting in altered epithelial integrity and associated immune responses. infection (CDI) is a spore-forming anaerobic bacterium and leading cause of antibiotic-associated colitis. Epidemiological data suggest that use of nonsteroidal anti-inflammatory drugs (NSAIDs) increases the risk for CDI in humans, a potentially important observation given the widespread use of NSAIDs. Prior studies in rodent models of CDI found that NSAID exposure following infection increases the severity of CDI, but mechanisms to explain this are lacking. Here we present new data from a mouse model of antibiotic-associated CDI suggesting that brief NSAID exposure prior to CDI increases the severity of the infectious colitis. These data shed new light on potential mechanisms linking NSAID use to worsened CDI, including drug-induced disturbances to the gut microbiome and colonic epithelial integrity. Studies were limited to a single NSAID (indomethacin), so future studies are needed to assess the generalizability of our findings and to establish a direct link to the human condition.
Copyright © 2019 Maseda et al.
0 Communities
2 Members
0 Resources
11 MeSH Terms
Chronic rhinosinusitis in elderly patients is associated with an exaggerated neutrophilic proinflammatory response to pathogenic bacteria.
Morse JC, Li P, Ely KA, Shilts MH, Wannemuehler TJ, Huang LC, Sheng Q, Chowdhury NI, Chandra RK, Das SR, Turner JH
(2019) J Allergy Clin Immunol 143: 990-1002.e6
MeSH Terms: Adult, Aged, Bacteria, Bacterial Infections, Chronic Disease, Cluster Analysis, Cytokines, Female, Humans, Male, Middle Aged, Mucus, Nasal Polyps, Neutrophils, Paranasal Sinuses, Rhinitis, Sinusitis
Show Abstract · Added July 23, 2020
BACKGROUND - Potential effects of aging on chronic rhinosinusitis (CRS) pathophysiology have not been well defined but might have important ramifications given a rapidly aging US and world population.
OBJECTIVE - The goal of the current study was to determine whether advanced age is associated with specific inflammatory CRS endotypes or immune signatures.
METHODS - Levels of 17 mucus cytokines and inflammatory mediators were measured in 147 patients with CRS. Hierarchical cluster analysis was used to identify and characterize inflammatory CRS endotypes, as well as to determine whether age was associated with specific immune signatures.
RESULTS - A CRS endotype with a proinflammatory neutrophilic immune signature was enriched in older patients. In the overall cohort patients 60 years and older had increased mucus levels of IL-1β, IL-6, IL-8, and TNF-α when compared with their younger counterparts. Increases in levels of proinflammatory cytokines were associated with both tissue neutrophilia and symptomatic bacterial infection/colonization in aged patients.
CONCLUSIONS - Aged patients with CRS have a unique inflammatory signature that corresponds to a neutrophilic proinflammatory response. Neutrophil-driven inflammation in aged patients with CRS might be less likely to respond to corticosteroids and might be closely linked to chronic microbial infection or colonization.
Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Substrate stiffness heterogeneities disrupt endothelial barrier integrity in a micropillar model of heterogeneous vascular stiffening.
VanderBurgh JA, Hotchkiss H, Potharazu A, Taufalele PV, Reinhart-King CA
(2018) Integr Biol (Camb) 10: 734-746
MeSH Terms: Adherens Junctions, Animals, Aorta, Atherosclerosis, Cattle, Cell Adhesion, Cell Communication, Cell Movement, Dimethylpolysiloxanes, Endothelial Cells, Endothelium, Vascular, Focal Adhesions, Human Umbilical Vein Endothelial Cells, Humans, Leukocytes, Materials Testing, Neutrophils, Phenotype, Tunica Intima, Vascular Stiffness, Vinculin
Show Abstract · Added April 10, 2019
Intimal stiffening has been linked with increased vascular permeability and leukocyte transmigration, hallmarks of atherosclerosis. However, recent evidence indicates age-related intimal stiffening is not uniform but rather characterized by increased point-to-point heterogeneity in subendothelial matrix stiffness, the impact of which is much less understood. To investigate the impact of spatially heterogeneous matrix rigidity on endothelial monolayer integrity, we develop a micropillar model to introduce closely-spaced, step-changes in substrate rigidity and compare endothelial monolayer phenotype to rigidity-matched, uniformly stiff and compliant substrates. We found equivalent disruption of adherens junctions within monolayers on step-rigidity and uniformly stiff substrates relative to uniformly compliant substrates. Similarly, monolayers cultured on step-rigidity substrates exhibited equivalent percentages of leukocyte transmigration to monolayers on rigidity-matched, uniformly stiff substrates. Adherens junction tension and focal adhesion density, but not size, increased within monolayers on step-rigidity and uniformly stiff substrates compared to more compliant substrates suggesting that elevated tension is disrupting adherens junction integrity. Leukocyte transmigration frequency and time, focal adhesion size, and focal adhesion density did not differ between stiff and compliant sub-regions of step-rigidity substrates. Overall, our results suggest that endothelial monolayers exposed to mechanically heterogeneous substrates adopt the phenotype associated with the stiffer matrix, indicating that spatial heterogeneities in intimal stiffness observed with age could disrupt endothelial barrier integrity and contribute to atherogenesis.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Antimicrobial action of calprotectin that does not involve metal withholding.
Besold AN, Culbertson EM, Nam L, Hobbs RP, Boyko A, Maxwell CN, Chazin WJ, Marques AR, Culotta VC
(2018) Metallomics 10: 1728-1742
MeSH Terms: Anti-Bacterial Agents, Borrelia burgdorferi, Escherichia coli, Glossitis, Benign Migratory, Humans, Leukocyte L1 Antigen Complex, Lyme Disease, Manganese, Neutrophils, Zinc
Show Abstract · Added March 26, 2019
Calprotectin is a potent antimicrobial that inhibits the growth of pathogens by tightly binding transition metals such as Mn and Zn, thereby preventing their uptake and utilization by invading microbes. At sites of infection, calprotectin is abundantly released from neutrophils, but calprotectin is also present in non-neutrophil cell types that may be relevant to infections. We show here that in patients infected with the Lyme disease pathogen Borreliella (Borrelia) burgdorferi, calprotectin is produced in neutrophil-free regions of the skin, in both epidermal keratinocytes and in immune cells infiltrating the dermis, including CD68 positive macrophages. In culture, B. burgdorferi's growth is inhibited by calprotectin, but surprisingly, the mechanism does not involve the classical withholding of metal nutrients. B. burgdorferi cells exposed to calprotectin cease growth with no reduction in intracellular Mn and no loss in activity of Mn enzymes including the SodA superoxide dismutase. Additionally, there is no obvious loss in intracellular Zn. Rather than metal depletion, we find that calprotectin inhibits B. burgdorferi growth through a mechanism that requires physical association of calprotectin with the bacteria. By comparison, calprotectin inhibited E. coli growth without physically interacting with the microbe, and calprotectin effectively depleted E. coli of intracellular Mn and Zn. Our studies with B. burgdorferi demonstrate that the antimicrobial capacity of calprotectin is complex and extends well beyond simple withholding of metal micronutrients.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Excessive localized leukotriene B4 levels dictate poor skin host defense in diabetic mice.
Brandt SL, Wang S, Dejani NN, Klopfenstein N, Winfree S, Filgueiras L, McCarthy BP, Territo PR, Serezani CH
(2018) JCI Insight 3:
MeSH Terms: Abscess, Animals, Bacterial Load, Cell Movement, Chemokines, Cytokines, Diabetes Mellitus, Experimental, Female, Inflammation, Leukotriene B4, Macrophages, Male, Methicillin-Resistant Staphylococcus aureus, Mice, Mice, Inbred C57BL, Mice, Knockout, Neutrophils, Receptors, Leukotriene B4, Signal Transduction, Skin, Staphylococcal Skin Infections
Show Abstract · Added March 18, 2020
Poorly controlled diabetes leads to comorbidities and enhanced susceptibility to infections. While the immune components involved in wound healing in diabetes have been studied, the components involved in susceptibility to skin infections remain unclear. Here, we examined the effects of the inflammatory lipid mediator leukotriene B4 (LTB4) signaling through its receptor B leukotriene receptor 1 (BLT1) in the progression of methicillin-resistant Staphylococcus aureus (MRSA) skin infection in 2 models of diabetes. Diabetic mice produced higher levels of LTB4 in the skin, which correlated with larger nonhealing lesion areas and increased bacterial loads compared with nondiabetic mice. High LTB4 levels were also associated with dysregulated cytokine and chemokine production, excessive neutrophil migration but impaired abscess formation, and uncontrolled collagen deposition. Both genetic deletion and topical pharmacological BLT1 antagonism restored inflammatory response and abscess formation, followed by a reduction in the bacterial load and lesion area in the diabetic mice. Macrophage depletion in diabetic mice limited LTB4 production and improved abscess architecture and skin host defense. These data demonstrate that exaggerated LTB4/BLT1 responses mediate a derailed inflammatory milieu that underlies poor host defense in diabetes. Prevention of LTB4 production/actions could provide a new therapeutic strategy to restore host defense in diabetes.
0 Communities
1 Members
0 Resources
MeSH Terms
Loss of CXCR4 in Myeloid Cells Enhances Antitumor Immunity and Reduces Melanoma Growth through NK Cell and FASL Mechanisms.
Yang J, Kumar A, Vilgelm AE, Chen SC, Ayers GD, Novitskiy SV, Joyce S, Richmond A
(2018) Cancer Immunol Res 6: 1186-1198
MeSH Terms: Animals, Bone Marrow Transplantation, Cell Line, Tumor, Cytotoxicity, Immunologic, Fas Ligand Protein, Interleukin-18, Killer Cells, Natural, Macrophages, Melanoma, Experimental, Mice, Inbred C57BL, Mice, Transgenic, Neutrophils, Receptors, CXCR4
Show Abstract · Added December 20, 2018
The chemokine receptor, CXCR4, is involved in cancer growth, invasion, and metastasis. Several promising CXCR4 antagonists have been shown to halt tumor metastasis in preclinical studies, and clinical trials evaluating the effectiveness of these agents in patients with cancer are ongoing. However, the impact of targeting CXCR4 specifically on immune cells is not clear. Here, we demonstrate that genetic deletion of CXCR4 in myeloid cells (CXCR4) enhances the antitumor immune response, resulting in significantly reduced melanoma tumor growth. Moreover, CXCR4 mice exhibited slowed tumor progression compared with CXCR4 mice in an inducible melanocyte mouse model. The percentage of Fas ligand (FasL)-expressing myeloid cells was reduced in CXCR4 mice as compared with myeloid cells from CXCR4 mice. In contrast, there was an increased percentage of natural killer (NK) cells expressing FasL in tumors growing in CXCR4 mice. NK cells from CXCR4 mice also exhibited increased tumor cell killing capacity , based on clearance of NK-sensitive Yac-1 cells. NK cell-mediated killing of Yac-1 cells occurred in a FasL-dependent manner, which was partially dependent upon the presence of CXCR4 neutrophils. Furthermore, enhanced NK cell activity in CXCR4 mice was also associated with increased production of IL18 by specific leukocyte subpopulations. These data suggest that CXCR4-mediated signals from myeloid cells suppress NK cell-mediated tumor surveillance and thereby enhance tumor growth. Systemic delivery of a peptide antagonist of CXCR4 to tumor-bearing CXCR4 mice resulted in enhanced NK-cell activation and reduced tumor growth, supporting potential clinical implications for CXCR4 antagonism in some cancers. .
©2018 American Association for Cancer Research.
0 Communities
2 Members
0 Resources
13 MeSH Terms
Bacterial-derived Neutrophilic Inflammation Drives Lung Remodeling in a Mouse Model of Chronic Obstructive Pulmonary Disease.
Richmond BW, Du RH, Han W, Benjamin JT, van der Meer R, Gleaves L, Guo M, McKissack A, Zhang Y, Cheng DS, Polosukhin VV, Blackwell TS
(2018) Am J Respir Cell Mol Biol 58: 736-744
MeSH Terms: Airway Remodeling, Aminopyridines, Animals, Bacillus, Benzamides, Cyclopropanes, Disease Models, Animal, Mice, Inbred C57BL, Mice, Mutant Strains, Neutrophils, Pneumonia, Bacterial, Pulmonary Disease, Chronic Obstructive, Pulmonary Emphysema, Receptors, Cell Surface
Show Abstract · Added March 21, 2018
Loss of secretory IgA is common in the small airways of patients with chronic obstructive pulmonary disease and may contribute to disease pathogenesis. Using mice that lack secretory IgA in the airways due to genetic deficiency of polymeric Ig receptor (pIgR mice), we investigated the role of neutrophils in driving the fibrotic small airway wall remodeling and emphysema that develops spontaneously in these mice. By flow cytometry, we found an increase in the percentage of neutrophils among CD45 cells in the lungs, as well as an increase in total neutrophils, in pIgR mice compared with wild-type controls. This increase in neutrophils in pIgR mice was associated with elastin degradation in the alveolar compartment and around small airways, along with increased collagen deposition in small airway walls. Neutrophil depletion using anti-Ly6G antibodies or treatment with broad-spectrum antibiotics inhibited development of both emphysema and small airway remodeling, suggesting that airway bacteria provide the stimulus for deleterious neutrophilic inflammation in this model. Exogenous bacterial challenge using lysates prepared from pathogenic and nonpathogenic bacteria worsened neutrophilic inflammation and lung remodeling in pIgR mice. This phenotype was abrogated by antiinflammatory therapy with roflumilast. Together, these studies support the concept that disruption of the mucosal immune barrier in small airways contributes to chronic obstructive pulmonary disease progression by allowing bacteria to stimulate chronic neutrophilic inflammation, which, in turn, drives progressive airway wall fibrosis and emphysematous changes in the lung parenchyma.
0 Communities
3 Members
0 Resources
14 MeSH Terms