Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 51

Publication Record

Connections

Increased breadth of HIV-1 neutralization achieved by diverse antibody clones each with limited neutralization breadth.
Chukwuma VU, Kose N, Sather DN, Sapparapu G, Falk R, King H, Singh V, Lampley R, Malherbe DC, Ditto NT, Sullivan JT, Barnes T, Doranz BJ, Labranche CC, Montefiori DC, Kalams SA, Haigwood NL, Crowe JE
(2018) PLoS One 13: e0209437
MeSH Terms: Antibodies, Neutralizing, Antibody Diversity, B-Lymphocytes, Cells, Cultured, Epitope Mapping, Epitopes, HIV Antibodies, HIV Infections, HIV-1, Humans, Hybridomas, Neutralization Tests, env Gene Products, Human Immunodeficiency Virus
Show Abstract · Added March 31, 2019
Broadly neutralizing antibodies (bNAbs) are rarely elicited by current human immunodeficiency virus type 1 (HIV-1) vaccine designs, but the presence of bNAbs in naturally infected individuals may be associated with high plasma viral loads, suggesting that the magnitude, duration, and diversity of viral exposure may contribute to the development of bNAbs. Here, we report the isolation and characterization of a panel of human monoclonal antibodies (mAbs) from two subjects who developed broadly neutralizing autologous antibody responses during HIV-1 infection. In both subjects, we identified collections of mAbs that exhibited specificity only to a few autologous envelopes (Envs), with some mAbs exhibiting specificity only to a subset of Envs within the quasispecies of a particular sample at one time point. Neutralizing antibodies (NAbs) isolated from these subjects mapped mostly to epitopes in the Env V3 loop region and the CD4 binding site. None of the individual neutralizing mAbs recovered exhibited the cumulative breadth of neutralization present in the serum of the subjects. Surprisingly, however, the activity of polyclonal mixtures comprising individual mAbs that each possessed limited neutralizing activity, could achieve increased breadth of neutralizing activity against autologous isolates. While a single broadly neutralizing antibody targeting one epitope can mediate neutralization breadth, the findings presented here suggest that a cooperative polyclonal process mediated by diverse antibodies with more limited breadth targeting multiple epitopes also can achieve neutralization breadth against HIV-1.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Surface-Matrix Screening Identifies Semi-specific Interactions that Improve Potency of a Near Pan-reactive HIV-1-Neutralizing Antibody.
Kwon YD, Chuang GY, Zhang B, Bailer RT, Doria-Rose NA, Gindin TS, Lin B, Louder MK, McKee K, O'Dell S, Pegu A, Schmidt SD, Asokan M, Chen X, Choe M, Georgiev IS, Jin V, Pancera M, Rawi R, Wang K, Chaudhuri R, Kueltzo LA, Manceva SD, Todd JP, Scorpio DG, Kim M, Reinherz EL, Wagh K, Korber BM, Connors M, Shapiro L, Mascola JR, Kwong PD
(2018) Cell Rep 22: 1798-1809
MeSH Terms: Antibodies, Neutralizing, Cell Membrane, HIV Antibodies, HIV Envelope Protein gp41, HIV-1, Half-Life, Humans, Neutralization Tests, Polysaccharides, Protein Binding
Show Abstract · Added March 14, 2018
Highly effective HIV-1-neutralizing antibodies could have utility in the prevention or treatment of HIV-1 infection. To improve the potency of 10E8, an antibody capable of near pan-HIV-1 neutralization, we engineered 10E8-surface mutants and screened for improved neutralization. Variants with the largest functional enhancements involved the addition of hydrophobic or positively charged residues, which were positioned to interact with viral membrane lipids or viral glycan-sialic acids, respectively. In both cases, the site of improvement was spatially separated from the region of antibody mediating molecular contact with the protein component of the antigen, thereby improving peripheral semi-specific interactions while maintaining unmodified dominant contacts responsible for broad recognition. The optimized 10E8 antibody, with mutations to phenylalanine and arginine, retained the extraordinary breadth of 10E8 but with ∼10-fold increased potency. We propose surface-matrix screening as a general method to improve antibodies, with improved semi-specific interactions between antibody and antigen enabling increased potency without compromising breadth.
Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Structure-function characterization of three human antibodies targeting the vaccinia virus adhesion molecule D8.
Matho MH, Schlossman A, Gilchuk IM, Miller G, Mikulski Z, Hupfer M, Wang J, Bitra A, Meng X, Xiang Y, Kaever T, Doukov T, Ley K, Crotty S, Peters B, Hsieh-Wilson LC, Crowe JE, Zajonc DM
(2018) J Biol Chem 293: 390-401
MeSH Terms: Antibodies, Antibodies, Monoclonal, Antibodies, Neutralizing, Antibodies, Viral, Antibody Formation, Antigens, Viral, Cell Adhesion Molecules, Crystallography, X-Ray, Enzyme-Linked Immunosorbent Assay, Epitopes, Humans, Neutralization Tests, Protein Binding, Structure-Activity Relationship, Vaccinia virus, Viral Envelope Proteins
Show Abstract · Added March 14, 2018
Vaccinia virus (VACV) envelope protein D8 is one of three glycosaminoglycan adhesion molecules and binds to the linear polysaccharide chondroitin sulfate (CS). D8 is also a target for neutralizing antibody responses that are elicited by the smallpox vaccine, which has enabled the first eradication of a human viral pathogen and is a useful model for studying antibody responses. However, to date, VACV epitopes targeted by human antibodies have not been characterized at atomic resolution. Here, we characterized the binding properties of several human anti-D8 antibodies and determined the crystal structures of three VACV-mAb variants, VACV-66, VACV-138, and VACV-304, separately bound to D8. Although all these antibodies bound D8 with high affinity and were moderately neutralizing in the presence of complement, VACV-138 and VACV-304 also fully blocked D8 binding to CS-A, the low affinity ligand for D8. VACV-138 also abrogated D8 binding to the high-affinity ligand CS-E, but we observed residual CS-E binding was observed in the presence of VACV-304. Analysis of the VACV-138- and VACV-304-binding sites along the CS-binding crevice of D8, combined with different efficiencies of blocking D8 adhesion to CS-A and CS-E allowed us to propose that D8 has a high- and low-affinity CS-binding region within its central crevice. The crevice is amenable to protein engineering to further enhance both specificity and affinity of binding to CS-E. Finally, a wild-type D8 tetramer specifically bound to structures within the developing glomeruli of the kidney, which express CS-E. We propose that through structure-based protein engineering, an improved D8 tetramer could be used as a potential diagnostic tool to detect expression of CS-E, which is a possible biomarker for ovarian cancer.
© 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Broadly neutralizing antibodies targeting the HIV-1 envelope V2 apex confer protection against a clade C SHIV challenge.
Julg B, Tartaglia LJ, Keele BF, Wagh K, Pegu A, Sok D, Abbink P, Schmidt SD, Wang K, Chen X, Joyce MG, Georgiev IS, Choe M, Kwong PD, Doria-Rose NA, Le K, Louder MK, Bailer RT, Moore PL, Korber B, Seaman MS, Abdool Karim SS, Morris L, Koup RA, Mascola JR, Burton DR, Barouch DH
(2017) Sci Transl Med 9:
MeSH Terms: Amino Acid Sequence, Animals, Antibodies, Neutralizing, CD4-Positive T-Lymphocytes, Female, HIV Envelope Protein gp120, HIV-1, Macaca mulatta, Male, Neutralization Tests, Sequence Alignment, Simian Acquired Immunodeficiency Syndrome, Simian Immunodeficiency Virus, Viral Load
Show Abstract · Added March 14, 2018
Neutralizing antibodies to the V2 apex antigenic region of the HIV-1 envelope (Env) trimer are among the most prevalent cross-reactive antibodies elicited by natural infection. Two recently described V2-specific antibodies, PGDM1400 and CAP256-VRC26.25, have demonstrated exquisite potency and neutralization breadth against HIV-1. However, little data exist on the protective efficacy of V2-specific neutralizing antibodies. We created a novel SHIV-325c viral stock that included a clade C HIV-1 envelope and was susceptible to neutralization by both of these antibodies. Rhesus macaques received a single infusion of either antibody at three different concentrations (2, 0.4, and 0.08 mg/kg) before challenge with SHIV-325c. PGDM1400 was fully protective at the 0.4 mg/kg dose, whereas CAP256-VRC26.25-LS was fully protective even at the 0.08 mg/kg dose, which correlated with its greater in vitro neutralization potency against the challenge virus. Serum antibody concentrations required for protection were <0.75 μg/ml for CAP256-VRC26.25-LS. These data demonstrate unprecedented potency and protective efficacy of V2-specific neutralizing antibodies in nonhuman primates and validate V2 as a potential target for the prevention of HIV-1 infection in passive immunization strategies in humans.
Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Principles of Broad and Potent Antiviral Human Antibodies: Insights for Vaccine Design.
Crowe JE
(2017) Cell Host Microbe 22: 193-206
MeSH Terms: Animals, Antibodies, Monoclonal, Antibodies, Neutralizing, Antibodies, Viral, Antigens, Viral, Antiviral Agents, Cross Reactions, Drug Design, Genes, Reporter, Humans, Immunity, Models, Molecular, Neutralization Tests, Protein Structure, Quaternary, Vaccination, Vaccines, Viral Envelope Proteins, Virus Diseases
Show Abstract · Added March 14, 2018
Antibodies are the principal immune effectors that mediate protection against reinfection following viral infection or vaccination. Robust techniques for human mAb isolation have been developed in the last decade. The study of human mAbs isolated from subjects with prior immunity has become a mainstay for rational structure-based, next-generation vaccine development. The plethora of detailed molecular and genetic studies coupling the structure of antigen-antibody complexes with their antiviral function has begun to reveal common principles of critical interactions on which we can build better vaccines and therapeutic antibodies. This review outlines the approaches to isolating and studying human antiviral mAbs and discusses the common principles underlying the basis for their activity. This review also examines progress toward the goal of achieving a comprehensive understanding of the chemical and physical basis for molecular recognition of viral surface proteins in order to build predictive molecular models that can be used for vaccine design.
Copyright © 2017. Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Mapping Polyclonal HIV-1 Antibody Responses via Next-Generation Neutralization Fingerprinting.
Doria-Rose NA, Altae-Tran HR, Roark RS, Schmidt SD, Sutton MS, Louder MK, Chuang GY, Bailer RT, Cortez V, Kong R, McKee K, O'Dell S, Wang F, Abdool Karim SS, Binley JM, Connors M, Haynes BF, Martin MA, Montefiori DC, Morris L, Overbaugh J, Kwong PD, Mascola JR, Georgiev IS
(2017) PLoS Pathog 13: e1006148
MeSH Terms: AIDS Vaccines, Algorithms, Antibody Formation, Antibody Specificity, Cohort Studies, Computer Simulation, Epitope Mapping, Epitopes, HIV Antibodies, HIV Infections, HIV-1, Humans, Neutralization Tests
Show Abstract · Added May 3, 2017
Computational neutralization fingerprinting, NFP, is an efficient and accurate method for predicting the epitope specificities of polyclonal antibody responses to HIV-1 infection. Here, we present next-generation NFP algorithms that substantially improve prediction accuracy for individual donors and enable serologic analysis for entire cohorts. Specifically, we developed algorithms for: (a) selection of optimized virus neutralization panels for NFP analysis, (b) estimation of NFP prediction confidence for each serum sample, and (c) identification of sera with potentially novel epitope specificities. At the individual donor level, the next-generation NFP algorithms particularly improved the ability to detect multiple epitope specificities in a sample, as confirmed both for computationally simulated polyclonal sera and for samples from HIV-infected donors. Specifically, the next-generation NFP algorithms detected multiple specificities in twice as many samples of simulated sera. Further, unlike the first-generation NFP, the new algorithms were able to detect both of the previously confirmed antibody specificities, VRC01-like and PG9-like, in donor CHAVI 0219. At the cohort level, analysis of ~150 broadly neutralizing HIV-infected donor samples suggested a potential connection between clade of infection and types of elicited epitope specificities. Most notably, while 10E8-like antibodies were observed in infections from different clades, an enrichment of such antibodies was predicted for clade B samples. Ultimately, such large-scale analyses of antibody responses to HIV-1 infection can help guide the design of epitope-specific vaccines that are tailored to take into account the prevalence of infecting clades within a specific geographic region. Overall, the next-generation NFP technology will be an important tool for the analysis of broadly neutralizing polyclonal antibody responses against HIV-1.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Structural Insights into Reovirus σ1 Interactions with Two Neutralizing Antibodies.
Dietrich MH, Ogden KM, Katen SP, Reiss K, Sutherland DM, Carnahan RH, Goff M, Cooper T, Dermody TS, Stehle T
(2017) J Virol 91:
MeSH Terms: Amino Acid Sequence, Animals, Antibodies, Neutralizing, Antibodies, Viral, Binding Sites, CHO Cells, Cell Line, Cricetulus, Hemagglutinin Glycoproteins, Influenza Virus, Immunoglobulin Fab Fragments, Mice, Molecular Docking Simulation, Molecular Dynamics Simulation, Neutralization Tests, Protein Binding, Protein Conformation, Protein Interaction Domains and Motifs, Reoviridae, Structure-Activity Relationship, Viral Proteins, Virus Replication
Show Abstract · Added April 26, 2017
Reovirus attachment protein σ1 engages glycan receptors and junctional adhesion molecule-A (JAM-A) and is thought to undergo a conformational change during the proteolytic disassembly of virions to infectious subvirion particles (ISVPs) that accompanies cell entry. The σ1 protein is also the primary target of neutralizing antibodies. Here, we present a structural and functional characterization of two neutralizing antibodies that target σ1 of serotype 1 (T1) and serotype 3 (T3) reoviruses. The crystal structures revealed that each antibody engages its cognate σ1 protein within the head domain via epitopes distinct from the JAM-A-binding site. Surface plasmon resonance and cell-binding assays indicated that both antibodies likely interfere with JAM-A engagement by steric hindrance. To define the interplay between the carbohydrate receptor and antibody binding, we conducted hemagglutination inhibition assays using virions and ISVPs. The glycan-binding site of T1 σ1 is located in the head domain and is partly occluded by the bound Fab in the crystal structure. The T1-specific antibody inhibited hemagglutination by virions and ISVPs, probably via direct interference with glycan engagement. In contrast to T1 σ1, the carbohydrate-binding site of T3 σ1 is located in the tail domain, distal to the antibody epitope. The T3-specific antibody inhibited hemagglutination by T3 virions but not ISVPs, indicating that the antibody- and glycan-binding sites in σ1 are in closer spatial proximity on virions than on ISVPs. Our results provide direct evidence for a structural rearrangement of σ1 during virion-to-ISVP conversion and contribute new information about the mechanisms of antibody-mediated neutralization of reovirus.
IMPORTANCE - Virus attachment proteins mediate binding to host cell receptors, serve critical functions in cell and tissue tropism, and are often targeted by the neutralizing antibody response. The structural investigation of antibody-antigen complexes can provide valuable information for understanding the molecular basis of virus neutralization. Studies with enveloped viruses, such as HIV and influenza virus, have helped to define sites of vulnerability and guide vaccination strategies. By comparison, less is known about antibody binding to nonenveloped viruses. Here, we structurally investigated two neutralizing antibodies that bind the attachment protein σ1 of reovirus. Furthermore, we characterized the neutralization efficiency, the binding affinity for σ1, and the effect of the antibodies on reovirus receptor engagement. Our analysis defines reovirus interactions with two neutralizing antibodies, allows us to propose a mechanism by which they block virus infection, and provides evidence for a conformational change in the σ1 protein during viral cell entry.
Copyright © 2017 American Society for Microbiology.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Multiple Antibody Lineages in One Donor Target the Glycan-V3 Supersite of the HIV-1 Envelope Glycoprotein and Display a Preference for Quaternary Binding.
Longo NS, Sutton MS, Shiakolas AR, Guenaga J, Jarosinski MC, Georgiev IS, McKee K, Bailer RT, Louder MK, O'Dell S, Connors M, Wyatt RT, Mascola JR, Doria-Rose NA
(2016) J Virol 90: 10574-10586
MeSH Terms: AIDS Vaccines, Amino Acid Sequence, Antibodies, Monoclonal, Antibodies, Neutralizing, Antibody Specificity, B-Lymphocytes, Binding Sites, Cells, Cultured, Epitope Mapping, HIV Antibodies, HIV Envelope Protein gp120, HIV Infections, HIV-1, Humans, Neutralization Tests, Peptide Fragments, Protein Structure, Quaternary
Show Abstract · Added May 3, 2017
One of the goals of HIV-1 vaccine development is the elicitation of neutralizing antibodies against vulnerable regions on the envelope glycoprotein (Env) viral spike. Broadly neutralizing antibodies targeting the Env glycan-V3 region (also called the N332 glycan supersite) have been described previously, with several single lineages each derived from different individual donors. We used a high-throughput B-cell culture method to isolate neutralizing antibodies from an HIV-1-infected donor with high serum neutralization breadth. Clonal relatives from three distinct antibody lineages were isolated. Each of these antibody lineages displayed modest breadth and potency but shared several characteristics with the well-characterized glycan-V3 antibodies, including dependence on glycans N332 and N301, VH4 family gene utilization, a heavy chain complementarity-determining region 2 (CDRH2) insertion, and a longer-than-average CDRH3. In contrast to previously described glycan-V3 antibodies, these antibodies preferentially recognized the native Env trimer compared to monomeric gp120. These data indicate the diversity of antibody specificities that target the glycan-V3 site. The quaternary binding preference of these antibodies suggests that that their elicitation likely requires the presentation of a native-like trimeric Env immunogen.
IMPORTANCE - Broadly neutralizing antibodies targeting the HIV-1 glycan-V3 region with single lineages from individual donors have been described previously. Here we describe three lineages from a single donor, each of which targets glycan-V3. Unlike previously described glycan-V3 antibodies, these mature antibodies bind preferentially to the native Env trimer and weakly to the gp120 monomer. These data extend our knowledge of the immune response recognition of the N332 supersite region and suggest that the mode of epitope recognition is more complex than previously anticipated.
Copyright © 2016, American Society for Microbiology. All Rights Reserved.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Structural basis for norovirus neutralization by an HBGA blocking human IgA antibody.
Shanker S, Czakó R, Sapparapu G, Alvarado G, Viskovska M, Sankaran B, Atmar RL, Crowe JE, Estes MK, Prasad BV
(2016) Proc Natl Acad Sci U S A 113: E5830-E5837
MeSH Terms: Amino Acid Sequence, Antibodies, Blocking, Antigens, Blood Group Antigens, Crystallography, X-Ray, Epitopes, Genotype, Humans, Immunoglobulin A, Immunoglobulin Fab Fragments, Models, Molecular, Neutralization Tests, Norovirus, Protein Domains, Viral Proteins
Show Abstract · Added April 13, 2017
Human noroviruses (HuNoVs) cause sporadic and epidemic gastroenteritis worldwide. They are classified into two major genogroups (GI and GII), with each genogroup further divided into multiple genotypes. Susceptibility to these viruses is influenced by genetically determined histo-blood group antigen (HBGA) expression. HBGAs function as cell attachment factors by binding to a surface-exposed region in the protruding (P) domain of the capsid protein. Sequence variations in this region that result in differential HBGA binding patterns and antigenicity are suggested to form a basis for strain diversification. Recent studies show that serum antibodies that block HBGA binding correlate with protection against illness. Although genogroup-dependent variation in HBGA binding specificity is structurally well characterized, an understanding of how antibodies block HBGA binding and how genotypic variations affect such blockade is lacking. Our crystallographic studies of the GI.1 P domain in complex with the Fab fragment of a human IgA monoclonal antibody (IgA 5I2) with HBGA blocking activity show that the antibody recognizes a conformational epitope formed by two surface-exposed loop clusters in the P domain. The antibody engulfs the HBGA binding site but does not affect its structural integrity. An unusual feature of the antigen recognition by IgA 5I2 is the predominant involvement of the CDR light chain 1 in contrast to the commonly observed CDR heavy chain 3, providing a unique perspective into antibody diversity in antigen recognition. Identification of the antigenic site in the P domain shows how genotypic variations might allow escape from antibody neutralization and exemplifies the interplay between antigenicity and HBGA specificity in HuNoV evolution.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Development of Human Monoclonal Antibodies Against Respiratory Syncytial Virus Using a High Efficiency Human Hybridoma Technique.
Alvarado G, Crowe JE
(2016) Methods Mol Biol 1442: 63-76
MeSH Terms: Antibodies, Monoclonal, Antibodies, Neutralizing, B-Lymphocytes, Cell Line, Cell Proliferation, Humans, Hybridomas, Lymphocyte Activation, Neutralization Tests, Respiratory Syncytial Virus, Human
Show Abstract · Added April 13, 2017
Human monoclonal antibodies against RSV have high potential for use as prophylaxis or therapeutic molecules, and they also can be used to define the structure of protective epitopes for rational vaccine design. In the past, however, isolation of human monoclonal antibodies was difficult and inefficient. Here, we describe contemporary methods for activation and proliferation of primary human memory B cells followed by cytofusion to non-secreting myeloma cells by dielectrophoresis to generate human hybridomas secreting RSV-specific monoclonal antibodies. We also provide experimental methods for screening human B cell lines to obtain RSV-specific lines, especially lines secreting neutralizing antibodies.
0 Communities
1 Members
0 Resources
10 MeSH Terms