Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 53

Publication Record

Connections

Physiological roles for neuromodulation via G GPCRs working through Gβγ-SNARE interaction.
Hamm HE, Alford ST
(2020) Neuropsychopharmacology 45: 221
MeSH Terms: Animals, Calcium, GTP-Binding Protein alpha Subunits, Gi-Go, GTP-Binding Protein beta Subunits, GTP-Binding Protein gamma Subunits, Humans, Neurotransmitter Agents, Protein Binding, SNARE Proteins
Added March 24, 2020
0 Communities
1 Members
0 Resources
9 MeSH Terms
Cholinergic Projections to the Substantia Nigra Pars Reticulata Inhibit Dopamine Modulation of Basal Ganglia through the M Muscarinic Receptor.
Moehle MS, Pancani T, Byun N, Yohn SE, Wilson GH, Dickerson JW, Remke DH, Xiang Z, Niswender CM, Wess J, Jones CK, Lindsley CW, Rook JM, Conn PJ
(2017) Neuron 96: 1358-1372.e4
MeSH Terms: Acetylcholine, Animals, Basal Ganglia, Channelrhodopsins, Choline O-Acetyltransferase, Cholinergic Agents, Cholinergic Neurons, Dopamine, Inhibitory Postsynaptic Potentials, Locomotion, Mice, Mice, Inbred C57BL, Mice, Transgenic, Neurotransmitter Agents, Oxygen, Pars Reticulata, Pedunculopontine Tegmental Nucleus, Receptor, Muscarinic M4, Receptors, Dopamine D1, Signal Transduction
Show Abstract · Added March 14, 2018
Cholinergic regulation of dopaminergic inputs into the striatum is critical for normal basal ganglia (BG) function. This regulation of BG function is thought to be primarily mediated by acetylcholine released from cholinergic interneurons (ChIs) acting locally in the striatum. We now report a combination of pharmacological, electrophysiological, optogenetic, chemogenetic, and functional magnetic resonance imaging studies suggesting extra-striatal cholinergic projections from the pedunculopontine nucleus to the substantia nigra pars reticulata (SNr) act on muscarinic acetylcholine receptor subtype 4 (M) to oppose cAMP-dependent dopamine receptor subtype 1 (D) signaling in presynaptic terminals of direct pathway striatal spiny projections neurons. This induces a tonic inhibition of transmission at direct pathway synapses and D-mediated activation of motor activity. These studies provide important new insights into the unique role of M in regulating BG function and challenge the prevailing hypothesis of the centrality of striatal ChIs in opposing dopamine regulation of BG output.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
4 Members
0 Resources
20 MeSH Terms
Co-Activation of Metabotropic Glutamate Receptor 3 and Beta-Adrenergic Receptors Modulates Cyclic-AMP and Long-Term Potentiation, and Disrupts Memory Reconsolidation.
Walker AG, Sheffler DJ, Lewis AS, Dickerson JW, Foster DJ, Senter RK, Moehle MS, Lv X, Stansley BJ, Xiang Z, Rook JM, Emmitte KA, Lindsley CW, Conn PJ
(2017) Neuropsychopharmacology 42: 2553-2566
MeSH Terms: Animals, Cerebral Cortex, Conditioning, Psychological, Cyclic AMP, Hippocampus, Long-Term Potentiation, Male, Memory Consolidation, Mice, Inbred ICR, Mice, Knockout, Neurotransmitter Agents, Rats, Sprague-Dawley, Receptors, Adrenergic, beta, Receptors, Metabotropic Glutamate, Tissue Culture Techniques
Show Abstract · Added March 21, 2018
Activation of β-adrenergic receptors (βARs) enhances both the induction of long-term potentiation (LTP) in hippocampal CA1 pyramidal cells and hippocampal-dependent cognitive function. Interestingly, previous studies reveal that coincident activation of group II metabotropic glutamate (mGlu) receptors with βARs in the hippocampal astrocytes induces a large increase in cyclic-AMP (cAMP) accumulation and release of adenosine. Adenosine then acts on A adenosine receptors at neighboring excitatory Schaffer collateral terminals, which could counteract effects of activation of neuronal βARs on excitatory transmission. On the basis of this, we postulated that activation of the specific mGlu receptor subtype that mediates this response could inhibit βAR-mediated effects on hippocampal synaptic plasticity and cognitive function. Using novel mGlu receptor subtype-selective allosteric modulators along with knockout mice we now report that the effects of mGlu agonists on βAR-mediated increases in cAMP accumulation are exclusively mediated by mGlu. Furthermore, mGlu activation inhibits the ability of the βAR agonist isoproterenol to enhance hippocampal LTP, and this effect is absent in slices treated with either a glial toxin or an adenosine A receptor antagonist. Finally, systemic administration of the mGlu agonist LY379268 disrupted contextual fear memory in a manner similar to the effect of the βAR antagonist propranolol, and this effect was reversed by the mGlu-negative allosteric modulator VU0650786. Taken together, these data suggest that mGlu can influence astrocytic signaling and modulate βAR-mediated effects on hippocampal synaptic plasticity and cognitive function.
0 Communities
1 Members
0 Resources
15 MeSH Terms
KCC3 loss-of-function contributes to Andermann syndrome by inducing activity-dependent neuromuscular junction defects.
Bowerman M, Salsac C, Bernard V, Soulard C, Dionne A, Coque E, Benlefki S, Hince P, Dion PA, Butler-Browne G, Camu W, Bouchard JP, Delpire E, Rouleau GA, Raoul C, Scamps F
(2017) Neurobiol Dis 106: 35-48
MeSH Terms: Agenesis of Corpus Callosum, Animals, Carbamazepine, Cells, Cultured, Chlorides, Disease Models, Animal, Mice, Inbred C57BL, Mice, Transgenic, Motor Neurons, Neuromuscular Junction, Neurotransmitter Agents, Peripheral Nervous System Diseases, Presynaptic Terminals, Sodium-Potassium-Exchanging ATPase, Spinal Cord, Symporters, Synaptic Transmission
Show Abstract · Added April 3, 2018
Loss-of-function mutations in the potassium-chloride cotransporter KCC3 lead to Andermann syndrome, a severe sensorimotor neuropathy characterized by areflexia, amyotrophy and locomotor abnormalities. The molecular events responsible for axonal loss remain poorly understood. Here, we establish that global or neuron-specific KCC3 loss-of-function in mice leads to early neuromuscular junction (NMJ) abnormalities and muscular atrophy that are consistent with the pre-synaptic neurotransmission defects observed in patients. KCC3 depletion does not modify chloride handling, but promotes an abnormal electrical activity among primary motoneurons and mislocalization of Na/K-ATPase α1 in spinal cord motoneurons. Moreover, the activity-targeting drug carbamazepine restores Na/K-ATPase α1 localization and reduces NMJ denervation in Slc12a6 mice. We here propose that abnormal motoneuron electrical activity contributes to the peripheral neuropathy observed in Andermann syndrome.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Challenges of Finding Novel Drugs Targeting the K-Cl Cotransporter.
Delpire E, Weaver CD
(2016) ACS Chem Neurosci 7: 1624-1627
MeSH Terms: Animals, Drug Discovery, Humans, Neurotransmitter Agents, Symporters
Show Abstract · Added May 3, 2017
Human disease-causing mutations and genetically modified mouse models have established the importance of KCC2 and KCC3 in nervous system physiology. These two proteins mediate the electroneutral cotransport of K and Cl ions across the neuronal membrane. Disruption of KCC2 function affects inhibitory synaptic transmission with consequences for epilepsy, pain perception, and potentially some neuropsychiatric disorders, whereas disruption of KCC3 affects both central and peripheral nervous systems, resulting in psychosis and peripheral neuropathy. Until recently, the KCC field has suffered from an almost complete lack of pharmacological tools with which to probe cotransporter function. The only available tools being the very poorly potent loop diuretics (e.g., furosemide EC = 6 × 10 M). To address this deficiency, efforts that focused on the discovery of KCC modulators have been undertaken. This work has resulted in the discovery of novel inhibitory compounds that are up to four orders of magnitude more potent (EC = 6 × 10 M) and with increased specificity. While useful for ex vivo studies, these tools possess poor pharmacokinetic properties, severely limiting their utility in vivo. In addition, only a few agents acting on regulatory molecules have been identified as putative KCC activators. Thus, further research is required to develop tools suitable to advance our understanding of how KCC modulation may be useful for the treatment of disease.
0 Communities
1 Members
0 Resources
5 MeSH Terms
Neuroendocrine modulation sustains the forward motor state.
Lim MA, Chitturi J, Laskova V, Meng J, Findeis D, Wiekenberg A, Mulcahy B, Luo L, Li Y, Lu Y, Hung W, Qu Y, Ho CY, Holmyard D, Ji N, McWhirter R, Samuel AD, Miller DM, Schnabel R, Calarco JA, Zhen M
(2016) Elife 5:
MeSH Terms: Animals, Behavior, Animal, Caenorhabditis elegans, Locomotion, Neural Pathways, Neurons, Neuropeptides, Neurosecretory Systems, Neurotransmitter Agents
Show Abstract · Added March 26, 2019
Neuromodulators shape neural circuit dynamics. Combining electron microscopy, genetics, transcriptome profiling, calcium imaging, and optogenetics, we discovered a peptidergic neuron that modulates motor circuit dynamics. The Six/SO-family homeobox transcription factor UNC-39 governs lineage-specific neurogenesis to give rise to a neuron RID. RID bears the anatomic hallmarks of a specialized endocrine neuron: it harbors near-exclusive dense core vesicles that cluster periodically along the axon, and expresses multiple neuropeptides, including the FMRF-amide-related FLP-14. RID activity increases during forward movement. Ablating RID reduces the sustainability of forward movement, a phenotype partially recapitulated by removing FLP-14. Optogenetic depolarization of RID prolongs forward movement, an effect reduced in the absence of FLP-14. Together, these results establish the role of a neuroendocrine cell RID in sustaining a specific behavioral state in .
0 Communities
1 Members
0 Resources
MeSH Terms
Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions.
Mingote S, Chuhma N, Kusnoor SV, Field B, Deutch AY, Rayport S
(2015) J Neurosci 35: 16259-71
MeSH Terms: Animals, Channelrhodopsins, DNA-Binding Proteins, Dopamine Plasma Membrane Transport Proteins, Dopaminergic Neurons, Excitatory Postsynaptic Potentials, Female, Glutamic Acid, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Nerve Net, Neural Pathways, Neurotransmitter Agents, Phosphopyruvate Hydratase, Prosencephalon, Transduction, Genetic, Tyrosine 3-Monooxygenase, Ventral Tegmental Area
Show Abstract · Added February 22, 2016
UNLABELLED - In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DAT(IREScre) mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome.
SIGNIFICANCE STATEMENT - Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain dopamine neurons are capable of glutamate cotransmission. With conditional expression of channelrhodopsin in dopamine neurons, we systematically explored dopamine neuron connections in the forebrain and identified regionally specific dopamine neuron excitatory connections. Establishing that only a subset of forebrain regions receive excitatory connections from dopamine neurons will help to determine the function of dopamine neuron glutamate cotransmission, which likely involves transmission of precise temporal signals and enhancement of the dynamic range of dopamine neuron signals.
Copyright © 2015 the authors 0270-6474/15/3516259-13$15.00/0.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Thematic Minireview Series: Molecular Mechanisms of Synaptic Plasticity.
Colbran RJ
(2015) J Biol Chem 290: 28594-5
MeSH Terms: Axons, Humans, Mental Disorders, Nerve Net, Neuronal Plasticity, Neurotransmitter Agents, Synapses
Show Abstract · Added February 15, 2016
The human brain contains ~86 billion neurons, which are precisely organized in specific brain regions and nuclei. High fidelity synaptic communication between subsets of neurons in specific circuits is required for most human behaviors, and is often disrupted in neuropsychiatric disorders. The presynaptic axon terminals of one neuron release neurotransmitters that activate receptors on multiple postsynaptic neuron targets to induce electrical and chemical responses. Typically, postsynaptic neurons integrate signals from multiple presynaptic neurons at thousands of synaptic inputs to control downstream communication to the next neuron in the circuit. Importantly, the strength (or efficiency) of signal transmission at each synapse can be modulated on time scales ranging up to the lifetime of the organism. This "synaptic plasticity" leads to changes in overall neuronal circuit activity, resulting in behavioral modifications. This series of minireviews will focus on recent advances in our understanding of the molecular and cellular mechanisms that control synaptic plasticity.
© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
7 MeSH Terms
The Pathogenesis and Management of Achalasia: Current Status and Future Directions.
Ates F, Vaezi MF
(2015) Gut Liver 9: 449-63
MeSH Terms: Botulinum Toxins, Deglutition Disorders, Diagnostic Errors, Endoscopy, Digestive System, Esophageal Achalasia, Esophageal Sphincter, Lower, Esophagus, Gastroesophageal Reflux, Humans, Injections, Subcutaneous, Manometry, Neurotransmitter Agents, Recurrence
Show Abstract · Added September 28, 2015
Achalasia is an esophageal motility disorder that is commonly misdiagnosed initially as gastroesophageal reflux disease. Patients with achalasia often complain of dysphagia with solids and liquids but may focus on regurgitation as the primary symptom, leading to initial misdiagnosis. Diagnostic tests for achalasia include esophageal motility testing, esophagogastroduodenoscopy and barium swallow. These tests play a complimentary role in establishing the diagnosis of suspected achalasia. High-resolution manometry has now identified three subtypes of achalasia, with therapeutic implications. Pneumatic dilation and surgical myotomy are the only definitive treatment options for patients with achalasia who can undergo surgery. Botulinum toxin injection into the lower esophageal sphincter should be reserved for those who cannot undergo definitive therapy. Close follow-up is paramount because many patients will have a recurrence of symptoms and require repeat treatment.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Substance P increases sympathetic activity during combined angiotensin-converting enzyme and dipeptidyl peptidase-4 inhibition.
Devin JK, Pretorius M, Nian H, Yu C, Billings FT, Brown NJ
(2014) Hypertension 63: 951-7
MeSH Terms: Adult, Angiotensin-Converting Enzyme Inhibitors, Blood Pressure, Bradykinin, Cross-Over Studies, Dipeptidyl Peptidase 4, Double-Blind Method, Enalaprilat, Enzyme Inhibitors, Female, Heart Rate, Humans, Male, Middle Aged, Neurotransmitter Agents, Norepinephrine, Peptidyl-Dipeptidase A, Pyrazines, Sitagliptin Phosphate, Substance P, Sympathetic Nervous System, Triazoles, Vascular Resistance
Show Abstract · Added January 20, 2015
UNLABELLED - Dipeptidyl peptidase-4 inhibitors prevent the degradation of incretin hormones and reduce postprandial hyperglycemia in patients with type 2 diabetes mellitus. Dipeptidyl peptidase-4 degrades other peptides with a penultimate proline or alanine, including bradykinin and substance P, which are also substrates of angiotensin-converting enzyme (ACE). During ACE inhibition, substance P is inactivated primarily by dipeptidyl peptidase-4, whereas bradykinin is first inactivated by aminopeptidase P. This study tested the hypothesis that dipeptidyl peptidase-4 inhibition potentiates vasodilator and fibrinolytic responses to substance P when ACE is inhibited. Twelve healthy subjects participated in this randomized, double-blinded, placebo-controlled crossover study. On each study day, subjects received sitagliptin 200 mg by mouth or placebo. Substance P and bradykinin were infused via brachial artery before and during intra-arterial enalaprilat. Sitagliptin and enalaprilat each reduced forearm vascular resistance and increased forearm blood flow without affecting mean arterial pressure, but there was no interactive effect of the inhibitors. Enalaprilat increased bradykinin-stimulated vasodilation and tissue plasminogen activator release; sitagliptin did not affect these responses to bradykinin. The vasodilator response to substance P was unaffected by sitagliptin and enalaprilat; however, substance P increased heart rate and vascular release of norepinephrine during combined ACE and dipeptidyl peptidase-4 inhibition. In women, sitagliptin diminished tissue plasminogen activator release in response to substance P both alone and during enalaprilat. Substance P increases sympathetic activity during combined ACE and dipeptidyl peptidase-4 inhibition.
CLINICAL TRIAL REGISTRATION - - URL: http://www.clinicaltrials.gov. Unique identifier: NCT01413542.
0 Communities
2 Members
0 Resources
23 MeSH Terms