Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 46

Publication Record

Connections

Immediate Enhancement of Nerve Function Using a Novel Axonal Fusion Device After Neurotmesis.
Riley DC, Boyer RB, Deister CA, Pollins AC, Cardwell NL, Kelm ND, Does MD, Dortch RD, Bamba R, Shack RB, Thayer WP
(2017) Ann Plast Surg 79: 590-599
MeSH Terms: Animals, Axons, Disease Models, Animal, Drug Delivery Systems, Electromyography, Female, Immunohistochemistry, Male, Nerve Regeneration, Neurosurgical Procedures, Peripheral Nerve Injuries, Polyethylene Glycols, Random Allocation, Rats, Rats, Sprague-Dawley, Recovery of Function, Sciatic Nerve, Trauma, Nervous System
Show Abstract · Added October 24, 2018
BACKGROUND - The management of peripheral nerve injuries remains a large challenge for plastic surgeons. With the inability to fuse axonal endings, results after microsurgical nerve repair have been inconsistent. Our current nerve repair strategies rely upon the slow and lengthy process of axonal regeneration (~1 mm/d). Polyethylene glycol (PEG) has been investigated as a potential axonal fusion agent; however, the percentage of axonal fusion has been inconsistent. The purpose of this study was to identify a PEG delivery device to standardize outcomes after attempted axonal fusion with PEG.
MATERIALS AND METHODS - We used a rat sciatic nerve injury model in which we completely transected and repaired the left sciatic nerve to evaluate the efficacy of PEG fusion over a span of 12 weeks. In addition, we evaluated the effectiveness of a delivery device's ability to optimize results after PEG fusion.
RESULTS - We found that PEG rapidly (within minutes) restores axonal continuity as assessed by electrophysiology, fluorescent retrograde tracer, and diffusion tensor imaging. Immunohistochemical analysis shows that motor axon counts are significantly increased at 1 week, 4 weeks, and 12 weeks postoperatively in PEG-treated animals. Furthermore, PEG restored behavioral functions up to 50% compared with animals that received the criterion standard epineurial repair (control animals).
CONCLUSIONS - The ability of PEG to rapidly restore nerve function after neurotmesis could have vast implications on the clinical management of traumatic injuries to peripheral nerves.
0 Communities
1 Members
0 Resources
MeSH Terms
Multiple Subpial Transections for Medically Refractory Epilepsy: A Disaggregated Review of Patient-Level Data.
Rolston JD, Deng H, Wang DD, Englot DJ, Chang EF
(2018) Neurosurgery 82: 613-620
MeSH Terms: Adolescent, Adult, Child, Drug Resistant Epilepsy, Female, Humans, Male, Middle Aged, Neurosurgical Procedures, Treatment Outcome
Show Abstract · Added July 28, 2017
BACKGROUND - Multiple subpial transections (MST) are a treatment for seizure foci in nonresectable eloquent areas.
OBJECTIVE - To systematically review patient-level data regarding MST.
METHODS - Studies describing patient-level data for MST procedures were extracted from the Medline and PubMed databases, yielding a synthetic cohort of 212 patients from 34 studies. Data regarding seizure outcome, patient demographics, seizure type, surgery type, and complications were extracted and analyzed.
RESULTS - Seizure freedom was achieved in 55.2% of patients undergoing MST combined with resection, and 23.9% of patients undergoing MST alone. Significant predictors for seizure freedom were a temporal lobe focus (odds ratio 4.9; 95% confidence interval 1.71, 14.3) and resection of portions of the focus, when feasible (odds ratio 3.88; 95% confidence interval 2.02, 7.45). Complications were frequent, with transient mono- or hemiparesis affecting 19.8% of patients, transient dysphasia 12.3%, and permanent paresis or dysphasia in 6.6% and 1.9% of patients, respectively.
CONCLUSION - MST is an effective treatment for refractory epilepsy in eloquent cortex, with greater chances of seizure freedom when portions of the focus are resected in tandem with MST. The reported rates of seizure freedom with MST are higher than those of existing neuromodulatory therapies, such as vagus nerve stimulation, deep brain stimulation, and responsive neurostimulation, though these latter therapies are supported by randomized-controlled trials, while MST is not. The reported complication rate of MST is higher than that of resection and neuromodulatory therapies. MST remains a viable option for the treatment of eloquent foci, provided a careful risk-benefit analysis is conducted.
0 Communities
1 Members
0 Resources
10 MeSH Terms
The transsylvian approach for resection of insular gliomas: technical nuances of splitting the Sylvian fissure.
Safaee MM, Englot DJ, Han SJ, Lawton MT, Berger MS
(2016) J Neurooncol 130: 283-287
MeSH Terms: Brain Neoplasms, Cerebral Cortex, Glioma, Humans, Neurosurgical Procedures
Show Abstract · Added August 12, 2016
Insular gliomas represent a unique surgical challenge due to the complex anatomy and nearby vascular elements associated within the Sylvian fissure. For certain tumors, the transsylvian approach provides an effective technique for achieving maximal safe resection. The goal of this manuscript and video are to present and discuss the surgical nuances and appropriate application of splitting the Sylvian fissure. Our hope is that this video highlights the safety and efficacy of the transsylvian approach for appropriately selected insular gliomas.
0 Communities
1 Members
0 Resources
5 MeSH Terms
Rate and complications of adult epilepsy surgery in North America: Analysis of multiple databases.
Rolston JD, Englot DJ, Knowlton RC, Chang EF
(2016) Epilepsy Res 124: 55-62
MeSH Terms: Adolescent, Adult, Aged, Aged, 80 and over, Canada, Databases, Factual, Epilepsy, Female, Humans, Intraoperative Complications, Male, Mexico, Middle Aged, Neurosurgical Procedures, Postoperative Complications, Treatment Outcome, United States, Young Adult
Show Abstract · Added August 12, 2016
Epilepsy surgery is under-utilized, but recent studies reach conflicting conclusions regarding whether epilepsy surgery rates are currently declining, increasing, or remaining steady. However, data in these prior studies are biased toward high-volume epilepsy centers, or originate from sources that do not disaggregate various procedure types. All major epilepsy surgery procedures were extracted from the Centers for Medicare and Medicaid Services Part B National Summary Data File and the American College of Surgeons National Surgical Quality Improvement Program. Procedure rates, trends, and complications were analyzed, and patient-level predictors of postoperative adverse events were identified. Between 2000-2013, 6200 cases of epilepsy surgery were identified. Temporal lobectomy was the most common procedure (59% of cases), and most did not utilize electrocorticography (63-64%). Neither temporal nor extratemporal lobe epilepsy surgery rates changed significantly during the study period, suggesting no change in utilization. Adverse events, including major and minor complications, occurred in 15.3% of temporal lobectomies and 55.6% of hemispherectomies. Our findings suggest stagnant rates of both temporal and extratemporal lobe epilepsy surgery across U.S. surgical centers over the past decade. This finding contrasts with prior reports suggesting a recent dramatic decline in temporal lobectomy rates at high-volume epilepsy centers. We also observed higher rates of adverse events when both low- and high-volume centers were examined together, as compared to reports from high-volume centers alone. This is consistent with the presence of a volume-outcome relationship in epilepsy surgery.
Copyright © 2016 Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Seizure outcomes in nonresective epilepsy surgery: an update.
Englot DJ, Birk H, Chang EF
(2017) Neurosurg Rev 40: 181-194
MeSH Terms: Drug Resistant Epilepsy, Electric Stimulation Therapy, Epilepsy, Humans, Laser Therapy, Neurosurgical Procedures, Radiosurgery, Seizures, Treatment Outcome
Show Abstract · Added August 12, 2016
In approximately 30 % of patients with epilepsy, seizures are refractory to medical therapy, leading to significant morbidity and increased mortality. Substantial evidence has demonstrated the benefit of surgical resection in patients with drug-resistant focal epilepsy, and in the present journal, we recently reviewed seizure outcomes in resective epilepsy surgery. However, not all patients are candidates for or amenable to open surgical resection for epilepsy. Fortunately, several nonresective surgical options are now available at various epilepsy centers, including novel therapies which have been pioneered in recent years. Ablative procedures such as stereotactic laser ablation and stereotactic radiosurgery offer minimally invasive alternatives to open surgery with relatively favorable seizure outcomes, particularly in patients with mesial temporal lobe epilepsy. For certain individuals who are not candidates for ablation or resection, palliative neuromodulation procedures such as vagus nerve stimulation, deep brain stimulation, or responsive neurostimulation may result in a significant decrease in seizure frequency and improved quality of life. Finally, disconnection procedures such as multiple subpial transections and corpus callosotomy continue to play a role in select patients with an eloquent epileptogenic zone or intractable atonic seizures, respectively. Overall, open surgical resection remains the gold standard treatment for drug-resistant epilepsy, although it is significantly underutilized. While nonresective epilepsy procedures have not replaced the need for resection, there is hope that these additional surgical options will increase the number of patients who receive treatment for this devastating disorder-particularly individuals who are not candidates for or who have failed resection.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Optic nerve sheath fenestration using a Raman-shifted alexandrite laser.
Kozub J, Shen JH, Joos KM, Prasad R, Hutson MS
(2016) Lasers Surg Med 48: 270-80
MeSH Terms: Animals, Decompression, Surgical, Endoscopy, Lasers, Solid-State, Nerve Compression Syndromes, Neurosurgical Procedures, Optic Nerve, Pseudotumor Cerebri, Spectrum Analysis, Raman, Swine
Show Abstract · Added March 19, 2018
BACKGROUND AND OBJECTIVE - Optic nerve sheath fenestration is an established procedure for relief of potentially damaging overpressure on the optic nerve resulting from idiopathic intracranial hypertension. Prior work showed that a mid-IR free-electron laser could be delivered endoscopically and used to produce an effective fenestration. This study evaluates the efficacy of fenestration using a table-top mid-IR source based on a Raman-shifted alexandrite (RSA) laser.
STUDY DESIGN/MATERIALS AND METHODS - Porcine optic nerves were ablated using light from an RSA laser at wavelengths of 6.09, 6.27, and 6.43 μm and pulse energies up to 3 mJ using both free-space and endoscopic beam delivery through 250-μm I.D. hollow-glass waveguides. Waveguide transmission was characterized, ablation thresholds and etch rates were measured, and the efficacy of endoscopic fenestration was evaluated for ex vivo exposures using both optical coherence tomography and histological analysis.
RESULTS - Using endoscopic delivery, the RSA laser can effectively fenestrate porcine optic nerves. Performance was optimized at a wavelength of 6.09 μm and delivered pulse energies of 0.5-0.8 mJ (requiring 1.5-2.5 mJ to be incident on the waveguide). Under these conditions, the ablation threshold fluence was 0.8 ± 0.2 J/cm(2) , the ablation rate was 1-4 μm/pulse, and the margins of ablation craters showed little evidence of thermal or mechanical damage. Nonetheless, nominally identical exposures yielded highly variable ablation rates. This led to fenestrations that ranged from too deep to too shallow-either damaging the underlying optic nerve or requiring additional exposure to cut fully through the sheath. Of 48 excised nerves subjected to fenestration at 6.09 μm, 16 ex vivo fenestrations were judged as good, 23 as too deep, and 9 as too shallow.
CONCLUSIONS - Mid-IR pulses from the RSA laser, propagated through a flexible hollow waveguide, are capable of cutting through porcine optic nerve sheaths in surgically relevant times with reasonable accuracy and low collateral damage. This can be accomplished at wavelengths of 6.09 or 6.27 μm, with 6.09 μm slightly preferred. The depth of ex vivo fenestrations was difficult to control, but excised nerves lack a sufficient layer of cerebrospinal fluid that would provide an additional margin of safety in actual patients.
© 2015 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Surgical management of medically refractory epilepsy in patients with polymicrogyria.
Wang DD, Knox R, Rolston JD, Englot DJ, Barkovich AJ, Tihan T, Auguste KI, Knowlton RC, Cornes SB, Chang EF
(2016) Epilepsia 57: 151-61
MeSH Terms: Adolescent, Adult, Analysis of Variance, Child, Child, Preschool, Drug Resistant Epilepsy, Electroencephalography, Female, Humans, Infant, Longitudinal Studies, Magnetic Resonance Imaging, Male, Neurosurgical Procedures, Polymicrogyria, Retrospective Studies, Treatment Outcome, Young Adult
Show Abstract · Added August 12, 2016
OBJECTIVE - Polymicrogyria (PMG) is a malformation of cortical development characterized by formation of an excessive number of small gyri. Sixty percent to 85% of patients with PMG have epilepsy that is refractory to medication, but surgical options are usually limited. We characterize a cohort of patient with polymicrogyria who underwent epilepsy surgery and document seizure outcomes.
METHODS - A retrospective study of all patients with PMG who underwent epilepsy surgery (focal seizure foci resection and/or hemispherectomy) at our center was performed by review of all clinical data related to their treatment.
RESULTS - We identified 12 patients (7 males and 5 female) with mean age of 18 (ranging from 3 months to 44 years) at time of surgery. Mean age at seizure onset was 8 years, with the majority (83%) having childhood onset. Six patients had focal, five had multifocal, and one patient had diffuse PMG. Perisylvian PMG was the most common pattern seen on magnetic resonance imaging (MRI). Eight patients had other cortical malformations including hemimegalencephaly and cortical dysplasia. Scalp electroencephalography (EEG) often showed diffuse epileptic discharges that poorly lateralized but were focal on intracranial electrocorticography (ECoG). Eight patients underwent seizure foci resection and four underwent hemispherectomy. Mean follow-up was 7 years (ranging from one to 19 years). Six patients (50%) were seizure-free at last follow-up. One patient had rare seizures (Engel class II). Three patients were Engel class III, having either decreased seizure frequency or severity, and two patients were Engel class IV. Gross total resection of the PMG cortex trended toward good seizure control.
SIGNIFICANCE - Our study shows that even in patients with extensive or bilateral PMG malformations, some may still be good candidates for surgery because the epileptogenic zone may involve only a portion of the malformation. Intracranial ECoG can provide additional localizing information compared to scalp EEG in guiding resection of epileptogenic foci.
Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Clinical evaluation of a model-updated image-guidance approach to brain shift compensation: experience in 16 cases.
Miga MI, Sun K, Chen I, Clements LW, Pheiffer TS, Simpson AL, Thompson RC
(2016) Int J Comput Assist Radiol Surg 11: 1467-74
MeSH Terms: Adult, Aged, Aged, 80 and over, Brain, Brain Neoplasms, Female, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Models, Theoretical, Monitoring, Intraoperative, Motion, Neurosurgical Procedures, Surgery, Computer-Assisted, Young Adult
Show Abstract · Added July 23, 2018
PURPOSE - Brain shift during neurosurgical procedures must be corrected for in order to reestablish accurate alignment for successful image-guided tumor resection. Sparse-data-driven biomechanical models that predict physiological brain shift by accounting for typical deformation-inducing events such as cerebrospinal fluid drainage, hyperosmotic drugs, swelling, retraction, resection, and tumor cavity collapse are an inexpensive solution. This study evaluated the robustness and accuracy of a biomechanical model-based brain shift correction system to assist with tumor resection surgery in 16 clinical cases.
METHODS - Preoperative computation involved the generation of a patient-specific finite element model of the brain and creation of an atlas of brain deformation solutions calculated using a distribution of boundary and deformation-inducing forcing conditions (e.g., sag, tissue contraction, and tissue swelling). The optimum brain shift solution was determined using an inverse problem approach which linearly combines solutions from the atlas to match the cortical surface deformation data collected intraoperatively. The computed deformations were then used to update the preoperative images for all 16 patients.
RESULTS - The mean brain shift measured ranged on average from 2.5 to 21.3 mm, and the biomechanical model-based correction system managed to account for the bulk of the brain shift, producing a mean corrected error ranging on average from 0.7 to 4.0 mm.
CONCLUSIONS - Biomechanical models are an inexpensive means to assist intervention via correction for brain deformations that can compromise surgical navigation systems. To our knowledge, this study represents the most comprehensive clinical evaluation of a deformation correction pipeline for image-guided neurosurgery.
0 Communities
1 Members
0 Resources
MeSH Terms
Computational Modeling for Enhancing Soft Tissue Image Guided Surgery: An Application in Neurosurgery.
Miga MI
(2016) Ann Biomed Eng 44: 128-38
MeSH Terms: Computer Simulation, Humans, Models, Biological, Neurosurgical Procedures
Show Abstract · Added July 23, 2018
With the recent advances in computing, the opportunities to translate computational models to more integrated roles in patient treatment are expanding at an exciting rate. One area of considerable development has been directed towards correcting soft tissue deformation within image guided neurosurgery applications. This review captures the efforts that have been undertaken towards enhancing neuronavigation by the integration of soft tissue biomechanical models, imaging and sensing technologies, and algorithmic developments. In addition, the review speaks to the evolving role of modeling frameworks within surgery and concludes with some future directions beyond neurosurgical applications.
0 Communities
1 Members
0 Resources
MeSH Terms
Minimally invasive surgical approaches for temporal lobe epilepsy.
Chang EF, Englot DJ, Vadera S
(2015) Epilepsy Behav 47: 24-33
MeSH Terms: Amygdala, Anterior Temporal Lobectomy, Cerebral Cortex, Deep Brain Stimulation, Epilepsy, Epilepsy, Temporal Lobe, Humans, Imaging, Three-Dimensional, Male, Middle Aged, Neurosurgical Procedures, Quality of Life, Radiosurgery, Seizures, Treatment Outcome, Vagus Nerve Stimulation
Show Abstract · Added August 12, 2016
Surgery can be a highly effective treatment for medically refractory temporal lobe epilepsy (TLE). The emergence of minimally invasive resective and nonresective treatment options has led to interest in epilepsy surgery among patients and providers. Nevertheless, not all procedures are appropriate for all patients, and it is critical to consider seizure outcomes with each of these approaches, as seizure freedom is the greatest predictor of patient quality of life. Standard anterior temporal lobectomy (ATL) remains the gold standard in the treatment of TLE, with seizure freedom resulting in 60-80% of patients. It is currently the only resective epilepsy surgery supported by randomized controlled trials and offers the best protection against lateral temporal seizure onset. Selective amygdalohippocampectomy techniques preserve the lateral cortex and temporal stem to varying degrees and can result in favorable rates of seizure freedom but the risk of recurrent seizures appears slightly greater than with ATL, and it is not clear whether neuropsychological outcomes are improved with selective approaches. Stereotactic radiosurgery presents an opportunity to avoid surgery altogether, with seizure outcomes now under investigation. Stereotactic laser thermo-ablation allows destruction of the mesial temporal structures with low complication rates and minimal recovery time, and outcomes are also under study. Finally, while neuromodulatory devices such as responsive neurostimulation, vagus nerve stimulation, and deep brain stimulation have a role in the treatment of certain patients, these remain palliative procedures for those who are not candidates for resection or ablation, as complete seizure freedom rates are low. Further development and investigation of both established and novel strategies for the surgical treatment of TLE will be critical moving forward, given the significant burden of this disease.
Copyright © 2015 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
16 MeSH Terms