Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 39

Publication Record

Connections

Neuregulin-1β induces proliferation, survival and paracrine signaling in normal human cardiac ventricular fibroblasts.
Kirabo A, Ryzhov S, Gupte M, Sengsayadeth S, Gumina RJ, Sawyer DB, Galindo CL
(2017) J Mol Cell Cardiol 105: 59-69
MeSH Terms: Calcium, Calcium Signaling, Cell Line, Cell Proliferation, Cell Survival, Heart Ventricles, Humans, Intracellular Space, Myofibroblasts, Neuregulin-1, Paracrine Communication, Sarcoplasmic Reticulum, Signal Transduction
Show Abstract · Added December 27, 2017
Neuregulin-1β (NRG-1β) is critical for cardiac development and repair, and recombinant forms are currently being assessed as possible therapeutics for systolic heart failure. We previously demonstrated that recombinant NRG-1β reduces cardiac fibrosis in an animal model of cardiac remodeling and heart failure, suggesting that there may be direct effects on cardiac fibroblasts. Here we show that NRG-1β receptors (ErbB2, ErbB3, and ErbB4) are expressed in normal human cardiac ventricular (NHCV) fibroblast cell lines. Treatment of NHCV fibroblasts with recombinant NRG-1β induced activation of the AKT pathway, which was phosphoinositide 3-kinase (PI3K)-dependent. Moreover, the NRG-1β-induced PI3K/AKT signaling in these cells required phosphorylation of both ErbB2 and ErbB3 receptors at tyrosine (Tyr)1248 and Tyr1289 respectively. RNASeq analysis of NRG-1β-treated cardiac fibroblasts obtained from three different individuals revealed a global gene expression signature consistent with cell growth and survival. We confirmed enhanced cellular proliferation and viability in NHCV fibroblasts in response to NRG-1β, which was abrogated by PI3K, ErbB2, and ErbB3 inhibitors. NRG-1β also induced production and secretion of cytokines (interleukin-1α and interferon-γ) and pro-reparative factors (angiopoietin-2, brain-derived neurotrophic factor, and crypto-1), suggesting a role in cardiac repair through the activation of paracrine signaling.
Copyright © 2017 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Loss of hepatocyte EGFR has no effect alone but exacerbates carbon tetrachloride-induced liver injury and impairs regeneration in hepatocyte Met-deficient mice.
Scheving LA, Zhang X, Stevenson MC, Threadgill DW, Russell WE
(2015) Am J Physiol Gastrointest Liver Physiol 308: G364-77
MeSH Terms: Animals, Carbon Tetrachloride, Chemical and Drug Induced Liver Injury, Cyclin A, Cyclin D1, Epidermal Growth Factor, ErbB Receptors, Hepatocytes, Liver Regeneration, Mice, Neuregulin-1, Proto-Oncogene Proteins c-met, Receptor, ErbB-3
Show Abstract · Added May 5, 2016
The role(s) of the epidermal growth factor receptor (EGFR) in hepatocytes is unknown. We generated a murine hepatocyte specific-EGFR knockout (KO) model to evaluate how loss of hepatocellular EGFR expression affects processes such as EGF clearance, circulating EGF concentrations, and liver regeneration following 70% resection or CCl4-induced centrilobular injury. We were able to disrupt EGFR expression effectively in hepatocytes and showed that the ability of EGF and heregulin (HRG) to phosphorylate EGFR and ERBB3, respectively, required EGFR. Loss of hepatocellular EGFR impaired clearance of exogenous EGF from the portal circulation but paradoxically resulted in reduced circulating levels of endogenous EGF. This was associated with decreased submandibular salivary gland production of EGF. EGFR disruption did not result in increased expression of other ERBB proteins or Met, except in neonatal mice. Liver regeneration following 70% hepatectomy revealed a mild phenotype, with no change in cyclin D1 expression and slight differences in cyclin A expression compared with controls. Peak 5-bromo-2'-deoxyuridine labeling was shifted from 36 to 48 h. Centrilobular damage and regenerative response induced by carbon tetrachloride (CCl4) were identical in the KO and wild-type mice. In contrast, loss of Met increased CCl4-induced necrosis and delayed regeneration. Although loss of hepatocellular EGFR alone did not have an effect in this model, EGFR-Met double KOs displayed enhanced necrosis and delayed liver regeneration compared with Met KOs alone. This suggests that EGFR and Met may partially compensate for the loss of the other, although other compensatory mechanisms can be envisioned.
Copyright © 2015 the American Physiological Society.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Anti-remodeling and anti-fibrotic effects of the neuregulin-1β glial growth factor 2 in a large animal model of heart failure.
Galindo CL, Kasasbeh E, Murphy A, Ryzhov S, Lenihan S, Ahmad FA, Williams P, Nunnally A, Adcock J, Song Y, Harrell FE, Tran TL, Parry TJ, Iaci J, Ganguly A, Feoktistov I, Stephenson MK, Caggiano AO, Sawyer DB, Cleator JH
(2014) J Am Heart Assoc 3: e000773
MeSH Terms: Actins, Animals, Cells, Cultured, Disease Models, Animal, Dose-Response Relationship, Drug, Fibrosis, Gene Expression Regulation, Heart Failure, Male, Mice, Inbred C57BL, Myocardial Contraction, Myocardium, Myofibroblasts, Neuregulin-1, Phosphorylation, Rats, Sprague-Dawley, Smad3 Protein, Swine, Time Factors, Transcription, Genetic, Ventricular Function, Left, Ventricular Remodeling
Show Abstract · Added March 15, 2017
BACKGROUND - Neuregulin-1β (NRG-1β) is a growth factor critical for cardiac development and repair with therapeutic potential for heart failure. We previously showed that the glial growth factor 2 (GGF2) isoform of NRG-1β improves cardiac function in rodents after myocardial infarction (MI), but its efficacy in a large animal model of cardiac injury has not been examined. We therefore sought to examine the effects of GGF2 on ventricular remodeling, cardiac function, and global transcription in post-MI swine, as well as potential mechanisms for anti-remodeling effects.
METHODS AND RESULTS - MI was induced in anesthetized swine (n=23) by intracoronary balloon occlusion. At 1 week post-MI, survivors (n=13) received GGF2 treatment (intravenous, biweekly for 4 weeks; n=8) or were untreated (n=5). At 5 weeks post-MI, fractional shortening was higher (32.8% versus 25.3%, P=0.019), and left ventricular (LV) end-diastolic dimension lower (4.5 versus 5.3 cm, P=0.003) in GGF2-treated animals. Treatment altered expression of 528 genes, as measured by microarrays, including collagens, basal lamina components, and matricellular proteins. GGF2-treated pigs exhibited improvements in LV cardiomyocyte mitochondria and intercalated disk structures and showed less fibrosis, altered matrix structure, and fewer myofibroblasts (myoFbs), based on trichrome staining, electron microscopy, and immunostaining. In vitro experiments with isolated murine and rat cardiac fibroblasts demonstrate that NRG-1β reduces myoFbs, and suppresses TGFβ-induced phospho-SMAD3 as well as αSMA expression.
CONCLUSIONS - These results suggest that GGF2/NRG-1β prevents adverse remodeling after injury in part via anti-fibrotic effects in the heart.
© 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Neuregulin-1β induces embryonic stem cell cardiomyogenesis via ErbB3/ErbB2 receptors.
Hao J, Galindo CL, Tran TL, Sawyer DB
(2014) Biochem J 458: 335-41
MeSH Terms: Animals, Cell Differentiation, Cell Line, Cyclic AMP Response Element-Binding Protein, Embryonic Stem Cells, Gene Knockdown Techniques, Mice, Myocytes, Cardiac, Nerve Tissue Proteins, Neuregulin-1, RNA, Small Interfering, Receptor, ErbB-2, Receptor, ErbB-3, Signal Transduction
Show Abstract · Added May 21, 2014
NRG-1β (neuregulin-1β) serves multiple functions during embryonic heart development by signalling through ErbB family receptor tyrosine kinases (ErbB2, ErbB3 and ErbB4). Previous studies reported that NRG-1β induces cardiomyogenesis of mESCs (mouse embryonic stem cells) at the later stages of differen-tiation through ErbB4 receptor activation. In the present study we systematically examined NRG-1β induction of cardiac myocytes in mESCs and identified a novel time window, the first 48 h, for NRG-1β-based cardiomyogenesis. At this time point ErbB3, but not ErbB4, is expressed. In contrast with the later differentiation of mESCs in which NRG-1β induces cardiomyogenesis via the ErbB4 receptor, we found that knocking down ErbB3 or ErbB2 with siRNA during the early differentiation inhibited NRG-1β-induced cardiomyogenesis in mESCs. Microarray analysis of RNA expression at this early time point indicated that NRG-1β treatment in mESCs resulted in gene expression changes important to differentiation including up-regulation of components of PI3K (phosphoinositide 3-kinase), a known mediator of the NRG-1β/ErbB signalling pathway, as well as activation of CREB (cAMP-response-element-binding protein). Further study demonstrated that the NRG-1β-induced phosphorylation of CREB was required for cardiomyogenesis of mESCs. In summary, we report a previously unrecognized role for NRG-1β/ErbB3/CREB signalling at the pre-mesoderm stage for stem cell cardiac differentiation.
1 Communities
1 Members
0 Resources
14 MeSH Terms
Neuregulin as a heart failure therapy and mediator of reverse remodeling.
Galindo CL, Ryzhov S, Sawyer DB
(2014) Curr Heart Fail Rep 11: 40-9
MeSH Terms: Biomarkers, Cardiovascular Agents, Cardiovascular Diseases, ErbB Receptors, Heart Failure, Humans, Neuregulin-1, Recombinant Proteins, Signal Transduction, Ventricular Remodeling
Show Abstract · Added March 5, 2014
The beta isoform of Neuregulin-1 (NRG-1β), along with its receptors (ErbB2-4), is required for cardiac development. NRG-1β, as well as the ErbB2 and ErbB4 receptors, is also essential for maintenance of adult heart function. These observations have led to its evaluation as a therapeutic for heart failure. Animal studies and ongoing clinical trials have demonstrated beneficial effects of two forms of recombinant NRG-1β on cardiac function. In addition to the possible role for recombinant NRG-1βs as heart failure therapies, endogenous NRG-1β/ErbB signaling appears to play a role in restoring cardiac function after injury. The potential mechanisms by which NRG-1β may act as both a therapy and a mediator of reverse remodeling remain incompletely understood. In addition to direct effects on cardiac myocytes NRG-1β acts on the vasculature, interstitium, cardiac fibroblasts, and hematopoietic and immune cells, which, collectively, may contribute to NRG-1β's role in maintaining cardiac structure and function, as well as mediating reverse remodeling.
1 Communities
1 Members
0 Resources
10 MeSH Terms
An antibody that locks HER3 in the inactive conformation inhibits tumor growth driven by HER2 or neuregulin.
Garner AP, Bialucha CU, Sprague ER, Garrett JT, Sheng Q, Li S, Sineshchekova O, Saxena P, Sutton CR, Chen D, Chen Y, Wang H, Liang J, Das R, Mosher R, Gu J, Huang A, Haubst N, Zehetmeier C, Haberl M, Elis W, Kunz C, Heidt AB, Herlihy K, Murtie J, Schuller A, Arteaga CL, Sellers WR, Ettenberg SA
(2013) Cancer Res 73: 6024-35
MeSH Terms: Animals, Antibodies, Monoclonal, Humanized, Breast Neoplasms, Cell Proliferation, ErbB Receptors, Female, Humans, Immunoblotting, Immunoprecipitation, Mice, Mice, Inbred BALB C, Mice, Inbred NOD, Mice, Nude, Mice, SCID, Neuregulin-1, Phosphorylation, Protein Conformation, Protein Multimerization, Proto-Oncogene Proteins c-akt, Receptor, ErbB-2, Receptor, ErbB-3, Signal Transduction, Survival Rate, Tumor Cells, Cultured, Xenograft Model Antitumor Assays
Show Abstract · Added September 3, 2013
HER2/HER3 dimerization resulting from overexpression of HER2 or neuregulin (NRG1) in cancer leads to HER3-mediated oncogenic activation of phosphoinositide 3-kinase (PI3K) signaling. Although ligand-blocking HER3 antibodies inhibit NRG1-driven tumor growth, they are ineffective against HER2-driven tumor growth because HER2 activates HER3 in a ligand-independent manner. In this study, we describe a novel HER3 monoclonal antibody (LJM716) that can neutralize multiple modes of HER3 activation, making it a superior candidate for clinical translation as a therapeutic candidate. LJM716 was a potent inhibitor of HER3/AKT phosphorylation and proliferation in HER2-amplified and NRG1-expressing cancer cells, and it displayed single-agent efficacy in tumor xenograft models. Combining LJM716 with agents that target HER2 or EGFR produced synergistic antitumor activity in vitro and in vivo. In particular, combining LJM716 with trastuzumab produced a more potent inhibition of signaling and cell proliferation than trastuzumab/pertuzumab combinations with similar activity in vivo. To elucidate its mechanism of action, we solved the structure of LJM716 bound to HER3, finding that LJM716 bound to an epitope, within domains 2 and 4, that traps HER3 in an inactive conformation. Taken together, our findings establish that LJM716 possesses a novel mechanism of action that, in combination with HER2- or EGFR-targeted agents, may leverage their clinical efficacy in ErbB-driven cancers.
0 Communities
2 Members
0 Resources
25 MeSH Terms
Type 1 diabetes mellitus abrogates compensatory augmentation of myocardial neuregulin-1β/ErbB in response to myocardial infarction resulting in worsening heart failure.
Odiete O, Konik EA, Sawyer DB, Hill MF
(2013) Cardiovasc Diabetol 12: 52
MeSH Terms: Animals, Diabetes Mellitus, Experimental, Diabetes Mellitus, Type 1, Heart Failure, Male, Myocardial Infarction, Myocardium, Neuregulin-1, Rats, Rats, Sprague-Dawley, Receptor, ErbB-2
Show Abstract · Added March 5, 2014
BACKGROUND - Diabetes mellitus (DM) patients surviving myocardial infarction (MI) exhibit a substantially higher incidence of subsequent heart failure (HF). Neuregulin (NRG)-1 and erythroblastic leukemia viral oncogene homolog (ErbB) receptors have been shown to play a critical role in maintenance of cardiac function. However, whether myocardial NRG-1/ErbB is altered during post-MI HF associated with DM remains unknown. The aim of this study was to determine the impact of type 1 DM on the myocardial NRG-1/ErbB system following MI in relation to residual left ventricular (LV) function.
METHODS - Type 1 DM was induced in rats via administration of streptozotocin (65 mg/kg, i.p.). Control rats were injected with citrate buffer (vehicle) only. Two weeks after induction of type 1 DM, MI was produced in DM and non-DM rats by ligation of the left coronary artery. Sham MI rats underwent the same surgical procedure with the exception that the left coronary artery was not ligated. At 4 weeks after surgery, residual in vivo LV function was assessed via echocardiography. Myocardial protein expression of NRG-1β, ErbB2 and ErbB4 receptors, and MDM2 (a downstream signaling pathway induced by NRG-1 that has been implicated in cell survival) was assessed in the remaining, viable LV myocardium by Western blotting. Changes in ErbB receptor localization in the surviving LV myocardium of diabetic and non-diabetic post-MI rats was determined using immunohistochemistry techniques.
RESULTS - At 4 weeks post-MI, echocardiography revealed that LV fractional shortening (FS) and LV ejection fraction (EF) were significantly lower in the DM + MI group compared to the MI group (LVFS: 17.9 ± 0.7 vs. 25.2 ± 2.2; LVEF: 35.5 ± 1.4 vs. 47.5 ± 3.5, respectively; P < 0.05), indicating an increased functional severity of HF among the DM + MI rats. Up-regulation of NRG-1β and ErbB2 protein expression in the MI group was abrogated in the DM + MI group concurrent with degradation of MDM2, a downstream negative regulator of p53. ErbB2 and ErbB4 receptors re-localized to cardiac myocyte nuclei in failing type 1 diabetic post-MI hearts.
CONCLUSIONS - Type 1 DM prevents compensatory up-regulation of myocardial NRG-1/ErbB after MI coincident with an increased severity of HF.
1 Communities
1 Members
0 Resources
11 MeSH Terms
ERBB2 inhibition and heart failure.
Cote GM, Sawyer DB, Chabner BA
(2013) N Engl J Med 368: 876
MeSH Terms: Animals, Antibodies, Monoclonal, Humanized, Antineoplastic Agents, Heart Failure, Humans, Neuregulin-1, Receptor, ErbB-2
Added May 21, 2014
1 Communities
1 Members
0 Resources
7 MeSH Terms
Intravenous glial growth factor 2 (GGF2) isoform of neuregulin-1β improves left ventricular function, gene and protein expression in rats after myocardial infarction.
Hill MF, Patel AV, Murphy A, Smith HM, Galindo CL, Pentassuglia L, Peng X, Lenneman CG, Odiete O, Friedman DB, Kronenberg MW, Zheng S, Zhao Z, Song Y, Harrell FE, Srinivas M, Ganguly A, Iaci J, Parry TJ, Caggiano AO, Sawyer DB
(2013) PLoS One 8: e55741
MeSH Terms: Animals, Diet, High-Fat, Electrocardiography, Fibrosis, Gene Expression Regulation, Glucose, Heart Ventricles, Humans, Injections, Intravenous, Male, Myocardial Infarction, Myocardium, Neuregulin-1, Organ Size, Oxidative Stress, Positron-Emission Tomography, Protein Isoforms, Proteome, Rats, Rats, Sprague-Dawley, Real-Time Polymerase Chain Reaction, Receptor Protein-Tyrosine Kinases, Tissue Survival, Ultrasonography, Ventricular Function, Left
Show Abstract · Added March 2, 2014
AIMS - Recombinant Neuregulin (NRG)-1β has multiple beneficial effects on cardiac myocytes in culture, and has potential as a clinical therapy for heart failure (HF). A number of factors may influence the effect of NRG-1β on cardiac function via ErbB receptor coupling and expression. We examined the effect of the NRG-1β isoform, glial growth factor 2 (GGF2), in rats with myocardial infarction (MI) and determined the impact of high-fat diet as well as chronicity of disease on GGF2 induced improvement in left ventricular systolic function. Potential mechanisms for GGF2 effects on the remote myocardium were explored using microarray and proteomic analysis.
METHODS AND RESULTS - Rats with MI were randomized to receive vehicle, 0.625 mg/kg, or 3.25 mg/kg GGF2 in the presence and absence of high-fat feeding beginning at day 7 post-MI and continuing for 4 weeks. Residual left ventricular (LV) function was improved in both of the GGF2 treatment groups compared with the vehicle treated MI group at 4 weeks of treatment as assessed by echocardiography. High-fat diet did not prevent the effects of high dose GGF2. In experiments where treatment was delayed until 8 weeks after MI, high but not low dose GGF2 treatment was associated with improved systolic function. mRNA and protein expression analysis of remote left ventricular tissue revealed a number of changes in myocardial gene and protein expression altered by MI that were normalized by GGF2 treatment, many of which are involved in energy production.
CONCLUSIONS - This study demonstrates that in rats with MI induced systolic dysfunction, GGF2 treatment improves cardiac function. There are differences in sensitivity of the myocardium to GGF2 effects when administered early vs. late post-MI that may be important to consider in the development of GGF2 in humans.
1 Communities
4 Members
0 Resources
25 MeSH Terms
ErbB/integrin signaling interactions in regulation of myocardial cell-cell and cell-matrix interactions.
Pentassuglia L, Sawyer DB
(2013) Biochim Biophys Acta 1833: 909-16
MeSH Terms: Cardiomegaly, Cell Communication, Extracellular Matrix, Focal Adhesion Protein-Tyrosine Kinases, Gene Expression Regulation, Humans, Integrins, Isoenzymes, Myocardial Ischemia, Myocardium, Myocytes, Cardiac, Neuregulin-1, Oncogene Proteins v-erbB, Protein Binding, Signal Transduction
Show Abstract · Added May 21, 2014
Neuregulin (Nrg)/ErbB and integrin signaling pathways are critical for the normal function of the embryonic and adult heart. Both systems activate several downstream signaling pathways, with different physiological outputs: cell survival, fibrosis, excitation-contraction coupling, myofilament structure, cell-cell and cell-matrix interaction. Activation of ErbB2 by Nrg1β in cardiomycytes or its overexpression in cancer cells induces phosphorylation of FAK (Focal Adhesion Kinase) at specific sites with modulation of survival, invasion and cell-cell contacts. FAK is also a critical mediator of integrin receptors, converting extracellular matrix alterations into intracellular signaling. Systemic FAK deletion is lethal and is associated with left ventricular non-compaction whereas cardiac restriction in adult hearts is well tolerated. Nevertheless, these hearts are more susceptible to stress conditions like trans-aortic constriction, hypertrophy, and ischemic injury. As FAK is both downstream and specifically activated by integrins and Nrg-1β, here we will explore the role of FAK in the heart as a protective factor and as possible mediator of the crosstalk between the ErbB and Integrin receptors. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Copyright © 2012 Elsevier B.V. All rights reserved.
1 Communities
1 Members
0 Resources
15 MeSH Terms