Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 145

Publication Record

Connections

Limits to anatomical accuracy of diffusion tractography using modern approaches.
Schilling KG, Nath V, Hansen C, Parvathaneni P, Blaber J, Gao Y, Neher P, Aydogan DB, Shi Y, Ocampo-Pineda M, Schiavi S, Daducci A, Girard G, Barakovic M, Rafael-Patino J, Romascano D, Rensonnet G, Pizzolato M, Bates A, Fischi E, Thiran JP, Canales-Rodríguez EJ, Huang C, Zhu H, Zhong L, Cabeen R, Toga AW, Rheault F, Theaud G, Houde JC, Sidhu J, Chamberland M, Westin CF, Dyrby TB, Verma R, Rathi Y, Irfanoglu MO, Thomas C, Pierpaoli C, Descoteaux M, Anderson AW, Landman BA
(2019) Neuroimage 185: 1-11
MeSH Terms: Brain, Brain Mapping, Diffusion Tensor Imaging, Humans, Image Processing, Computer-Assisted, Neural Pathways
Show Abstract · Added March 26, 2019
Diffusion MRI fiber tractography is widely used to probe the structural connectivity of the brain, with a range of applications in both clinical and basic neuroscience. Despite widespread use, tractography has well-known pitfalls that limits the anatomical accuracy of this technique. Numerous modern methods have been developed to address these shortcomings through advances in acquisition, modeling, and computation. To test whether these advances improve tractography accuracy, we organized the 3-D Validation of Tractography with Experimental MRI (3D-VoTEM) challenge at the ISBI 2018 conference. We made available three unique independent tractography validation datasets - a physical phantom and two ex vivo brain specimens - resulting in 176 distinct submissions from 9 research groups. By comparing results over a wide range of fiber complexities and algorithmic strategies, this challenge provides a more comprehensive assessment of tractography's inherent limitations than has been reported previously. The central results were consistent across all sub-challenges in that, despite advances in tractography methods, the anatomical accuracy of tractography has not dramatically improved in recent years. Taken together, our results independently confirm findings from decades of tractography validation studies, demonstrate inherent limitations in reconstructing white matter pathways using diffusion MRI data alone, and highlight the need for alternative or combinatorial strategies to accurately map the fiber pathways of the brain.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
6 MeSH Terms
Resting-state white matter-cortical connectivity in non-human primate brain.
Wu TL, Wang F, Li M, Schilling KG, Gao Y, Anderson AW, Chen LM, Ding Z, Gore JC
(2019) Neuroimage 184: 45-55
MeSH Terms: Animals, Brain, Brain Mapping, Diffusion Tensor Imaging, Gray Matter, Magnetic Resonance Imaging, Neural Pathways, Saimiri, White Matter
Show Abstract · Added September 21, 2018
Numerous studies have used functional magnetic resonance imaging (fMRI) to characterize functional connectivity between cortical regions by analyzing correlations in blood oxygenation level dependent (BOLD) signals in a resting state. However, to date, there have been only a handful of studies reporting resting state BOLD signals in white matter. Nonetheless, a growing number of reports has emerged in recent years suggesting white matter BOLD signals can be reliably detected, though their biophysical origins remain unclear. Moreover, recent studies have identified robust correlations in a resting state between signals from cortex and specific white matter tracts. In order to further validate and interpret these findings, we studied a non-human primate model to investigate resting-state connectivity patterns between parcellated cortical volumes and specific white matter bundles. Our results show that resting-state connectivity patterns between white and gray matter structures are not randomly distributed but share notable similarities with diffusion- and histology-derived anatomic connectivities. This suggests that resting-state BOLD correlations between white matter fiber tracts and the gray matter regions to which they connect are directly related to the anatomic arrangement and density of WM fibers. We also measured how different levels of baseline neural activity, induced by varying levels of anesthesia, modulate these patterns. As anesthesia levels were raised, we observed weakened correlation coefficients between specific white matter tracts and gray matter regions while key features of the connectivity pattern remained similar. Overall, results from this study provide further evidence that neural activity is detectable by BOLD fMRI in both gray and white matter throughout the resting brain. The combined use of gray and white matter functional connectivity could also offer refined full-scale functional parcellation of the entire brain to characterize its functional architecture.
Published by Elsevier Inc.
0 Communities
2 Members
0 Resources
9 MeSH Terms
Hippocampal Network Modularity Is Associated With Relational Memory Dysfunction in Schizophrenia.
Avery SN, Rogers BP, Heckers S
(2018) Biol Psychiatry Cogn Neurosci Neuroimaging 3: 423-432
MeSH Terms: Adult, Brain Mapping, Female, Hippocampus, Humans, Magnetic Resonance Imaging, Male, Memory Disorders, Memory, Episodic, Middle Aged, Neural Pathways, Prefrontal Cortex, Schizophrenia, Temporal Lobe
Show Abstract · Added March 26, 2019
BACKGROUND - Functional dysconnectivity has been proposed as a major pathophysiological mechanism for cognitive dysfunction in schizophrenia. The hippocampus is a focal point of dysconnectivity in schizophrenia, with decreased hippocampal functional connectivity contributing to the marked memory deficits observed in patients. Normal memory function relies on the interaction of complex corticohippocampal networks. However, only recent technological advances have enabled the large-scale exploration of functional networks with accuracy and precision.
METHODS - We investigated the modularity of hippocampal resting-state functional networks in a sample of 45 patients with schizophrenia spectrum disorders and 38 healthy control subjects. Modularity was calculated for two distinct functional networks: a core hippocampal-medial temporal lobe cortex network and an extended hippocampal-cortical network. As hippocampal function differs along its longitudinal axis, follow-up analyses examined anterior and posterior networks separately. To explore effects of resting network function on behavior, we tested associations between modularity and relational memory ability. Age, sex, handedness, and parental education were similar between groups.
RESULTS - Network modularity was lower in schizophrenia patients, especially in the posterior hippocampal network. Schizophrenia patients also showed markedly lower relational memory ability compared with control subjects. We found a distinct brain-behavior relationship in schizophrenia that differed from control subjects by network and anterior/posterior division-while relational memory in control subjects was associated with anterior hippocampal-cortical modularity, schizophrenia patients showed an association with posterior hippocampal-medial temporal lobe cortex network modularity.
CONCLUSIONS - Our findings support a model of abnormal resting-state corticohippocampal network coherence in schizophrenia, which may contribute to relational memory deficits.
Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Excitatory Synaptic Input to Hilar Mossy Cells under Basal and Hyperexcitable Conditions.
Hedrick TP, Nobis WP, Foote KM, Ishii T, Chetkovich DM, Swanson GT
(2017) eNeuro 4:
MeSH Terms: Animals, CA3 Region, Hippocampal, Excitatory Postsynaptic Potentials, Female, Male, Mice, Mice, Inbred C57BL, Mossy Fibers, Hippocampal, Neural Pathways, Neuronal Plasticity, Organ Culture Techniques, Pyramidal Cells, Synapses, Synaptic Transmission
Show Abstract · Added April 2, 2019
Hilar mossy cells (HMCs) in the hippocampus receive glutamatergic input from dentate granule cells (DGCs) via mossy fibers (MFs) and back-projections from CA3 pyramidal neuron collateral axons. Many fundamental features of these excitatory synapses have not been characterized in detail despite their potential relevance to hippocampal cognitive processing and epilepsy-induced adaptations in circuit excitability. In this study, we compared pre- and postsynaptic parameters between MF and CA3 inputs to HMCs in young and adult mice of either sex and determined the relative contributions of the respective excitatory inputs during and models of hippocampal hyperexcitability. The two types of excitatory synapses both exhibited a modest degree of short-term plasticity, with MF inputs to HMCs exhibiting lower paired-pulse (PP) and frequency facilitation than was described previously for MF-CA3 pyramidal cell synapses. MF-HMC synapses exhibited unitary excitatory synaptic currents (EPSCs) of larger amplitude, contained postsynaptic kainate receptors, and had a lower NMDA/AMPA receptor ratio compared to CA3-HMC synapses. Pharmacological induction of hippocampal hyperexcitability transformed the abundant but relatively weak CA3-HMC connections to very large amplitude spontaneous bursts of compound EPSCs (cEPSCs) in young mice (∼P20) and, to a lesser degree, in adult mice (∼P70). CA3-HMC cEPSCs were also observed in slices prepared from mice with spontaneous seizures several weeks after intrahippocampal kainate injection. Strong excitation of HMCs during synchronous CA3 activity represents an avenue of significant excitatory network generation back to DGCs and might be important in generating epileptic networks.
0 Communities
1 Members
0 Resources
MeSH Terms
Modulation of thalamocortical oscillations by TRIP8b, an auxiliary subunit for HCN channels.
Zobeiri M, Chaudhary R, Datunashvili M, Heuermann RJ, Lüttjohann A, Narayanan V, Balfanz S, Meuth P, Chetkovich DM, Pape HC, Baumann A, van Luijtelaar G, Budde T
(2018) Brain Struct Funct 223: 1537-1564
MeSH Terms: Action Potentials, Adenine, Adenylyl Cyclase Inhibitors, Animals, Cardiovascular Agents, Cerebral Cortex, Cyclic AMP, Cyclic GMP, Female, Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels, Male, Membrane Proteins, Mice, Mice, Inbred C57BL, Mice, Transgenic, Models, Neurological, Neural Pathways, Peroxins, Pyrimidines, Sodium Channel Blockers, Tetrodotoxin, Thalamus, Thionucleotides
Show Abstract · Added April 2, 2019
Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels have important functions in controlling neuronal excitability and generating rhythmic oscillatory activity. The role of tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) in regulation of hyperpolarization-activated inward current, I , in the thalamocortical system and its functional relevance for the physiological thalamocortical oscillations were investigated. A significant decrease in I current density, in both thalamocortical relay (TC) and cortical pyramidal neurons was found in TRIP8b-deficient mice (TRIP8b). In addition basal cAMP levels in the brain were found to be decreased while the availability of the fast transient A-type K current, I , in TC neurons was increased. These changes were associated with alterations in intrinsic properties and firing patterns of TC neurons, as well as intrathalamic and thalamocortical network oscillations, revealing a significant increase in slow oscillations in the delta frequency range (0.5-4 Hz) during episodes of active-wakefulness. In addition, absence of TRIP8b suppresses the normal desynchronization response of the EEG during the switch from slow-wave sleep to wakefulness. It is concluded that TRIP8b is necessary for the modulation of physiological thalamocortical oscillations due to its direct effect on HCN channel expression in thalamus and cortex and that mechanisms related to reduced cAMP signaling may contribute to the present findings.
0 Communities
1 Members
0 Resources
MeSH Terms
Ventral striatal network connectivity reflects reward learning and behavior in patients with Parkinson's disease.
Petersen K, Van Wouwe N, Stark A, Lin YC, Kang H, Trujillo-Diaz P, Kessler R, Zald D, Donahue MJ, Claassen DO
(2018) Hum Brain Mapp 39: 509-521
MeSH Terms: Analysis of Variance, Antiparkinson Agents, Brain Mapping, Cerebrovascular Circulation, Dopamine Agonists, Female, Humans, Linear Models, Magnetic Resonance Imaging, Male, Middle Aged, Neural Pathways, Neuropsychological Tests, Oxygen, Parkinson Disease, Reward, Ventral Striatum
Show Abstract · Added March 21, 2018
A subgroup of Parkinson's disease (PD) patients treated with dopaminergic therapy develop compulsive reward-driven behaviors, which can result in life-altering morbidity. The mesocorticolimbic dopamine network guides reward-motivated behavior; however, its role in this treatment-related behavioral phenotype is incompletely understood. Here, mesocorticolimbic network function in PD patients who develop impulsive and compulsive behaviors (ICB) in response to dopamine agonists was assessed using BOLD fMRI. The tested hypothesis was that network connectivity between the ventral striatum and the limbic cortex is elevated in patients with ICB and that reward-learning proficiency reflects the extent of mesocorticolimbic network connectivity. To evaluate this hypothesis, 3.0T BOLD-fMRI was applied to measure baseline functional connectivity on and off dopamine agonist therapy in age and sex-matched PD patients with (n = 19) or without (n = 18) ICB. An incentive-based task was administered to a subset of patients (n = 20) to quantify positively or negatively reinforced learning. Whole-brain voxelwise analyses and region-of-interest-based mixed linear effects modeling were performed. Elevated ventral striatal connectivity to the anterior cingulate gyrus (P = 0.013), orbitofrontal cortex (P = 0.034), insula (P = 0.044), putamen (P = 0.014), globus pallidus (P < 0.01), and thalamus (P < 0.01) was observed in patients with ICB. A strong trend for elevated amygdala-to-midbrain connectivity was found in ICB patients on dopamine agonist. Ventral striatum-to-subgenual cingulate connectivity correlated with reward learning (P < 0.01), but not with punishment-avoidance learning. These data indicate that PD-ICB patients have elevated network connectivity in the mesocorticolimbic network. Behaviorally, proficient reward-based learning is related to this enhanced limbic and ventral striatal connectivity. Hum Brain Mapp 39:509-521, 2018. © 2017 Wiley Periodicals, Inc.
© 2017 Wiley Periodicals, Inc.
0 Communities
2 Members
0 Resources
17 MeSH Terms
Nicotine and networks: Potential for enhancement of mood and cognition in late-life depression.
Gandelman JA, Newhouse P, Taylor WD
(2018) Neurosci Biobehav Rev 84: 289-298
MeSH Terms: Affect, Animals, Brain, Brain Mapping, Cognition, Depression, Humans, Neural Pathways, Nicotine, Nicotinic Agonists
Show Abstract · Added March 14, 2018
Late-life depression is characterized by both lower mood and poor cognitive performance, symptoms that often do not fully respond to current antidepressant medications. Nicotinic acetylcholine receptor (nAChR) agonists such as nicotine may serve as a novel therapeutic approach for this population. Both preclinical and preliminary clinical studies suggest that nAChR agonists can improve depressive behavior in animal models and improve mood in depressed individuals. Substantial literature also supports that nAChR agonists benefit cognitive performance, particularly in older populations. These potential benefits may be mediated by the effects of nAChR stimulation on neural network function and connectivity. Functional neuroimaging studies detail effects of nAChR agonists on the default mode network, central-executive network, and salience network that may oppose or reverse network changes seen in depression. We propose that, given the existent literature and the clinical presentation of late-life depression, nicotine or other nAChR agonists may have unique therapeutic benefits in this population and that clinical trials examining nicotine effects on mood, cognition, and network dynamics in late-life depression are justified.
Published by Elsevier Ltd.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Functional connectivity disturbances of the ascending reticular activating system in temporal lobe epilepsy.
Englot DJ, D'Haese PF, Konrad PE, Jacobs ML, Gore JC, Abou-Khalil BW, Morgan VL
(2017) J Neurol Neurosurg Psychiatry 88: 925-932
MeSH Terms: Adult, Brain, Brain Mapping, Brain Stem, Case-Control Studies, Cerebral Cortex, Epilepsy, Temporal Lobe, Female, Humans, Limbic System, Magnetic Resonance Imaging, Male, Middle Aged, Neocortex, Neural Inhibition, Neural Pathways, Neurocognitive Disorders, Synaptic Transmission
Show Abstract · Added June 23, 2017
OBJECTIVE - Seizures in temporal lobe epilepsy (TLE) disturb brain networks and lead to connectivity disturbances. We previously hypothesised that recurrent seizures in TLE may lead to abnormal connections involving subcortical activating structures including the ascending reticular activating system (ARAS), contributing to neocortical dysfunction and neurocognitive impairments. However, no studies of ARAS connectivity have been previously reported in patients with epilepsy.
METHODS - We used resting-state functional MRI recordings in 27 patients with TLE (67% right sided) and 27 matched controls to examine functional connectivity (partial correlation) between eight brainstem ARAS structures and 105 cortical/subcortical regions. ARAS nuclei included: cuneiform/subcuneiform, dorsal raphe, locus coeruleus, median raphe, parabrachial complex, pontine oralis, pedunculopontine and ventral tegmental area. Connectivity patterns were related to disease and neuropsychological parameters.
RESULTS - In control subjects, regions showing highest connectivity to ARAS structures included limbic structures, thalamus and certain neocortical areas, which is consistent with prior studies of ARAS projections. Overall, ARAS connectivity was significantly lower in patients with TLE than controls (p<0.05, paired t-test), particularly to neocortical regions including insular, lateral frontal, posterior temporal and opercular cortex. Diminished ARAS connectivity to these regions was related to increased frequency of consciousness-impairing seizures (p<0.01, Pearson's correlation) and was associated with impairments in verbal IQ, attention, executive function, language and visuospatial memory on neuropsychological evaluation (p<0.05, Spearman's rho or Kendell's tau-b).
CONCLUSIONS - Recurrent seizures in TLE are associated with disturbances in ARAS connectivity, which are part of the widespread network dysfunction that may be related to neurocognitive problems in this devastating disorder.
© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
0 Communities
3 Members
0 Resources
18 MeSH Terms
Overexpressing wild-type γ2 subunits rescued the seizure phenotype in Gabrg2 Dravet syndrome mice.
Huang X, Zhou C, Tian M, Kang JQ, Shen W, Verdier K, Pimenta A, MacDonald RL
(2017) Epilepsia 58: 1451-1461
MeSH Terms: Action Potentials, Animals, Convulsants, Electric Stimulation, Epilepsies, Myoclonic, Humans, In Vitro Techniques, Inhibitory Postsynaptic Potentials, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Mutation, Neural Pathways, Patch-Clamp Techniques, Pentylenetetrazole, Protein Subunits, Pyramidal Cells, Receptors, GABA-A, Somatosensory Cortex, Thalamus
Show Abstract · Added June 21, 2017
OBJECTIVE - The mutant γ-aminobutyric acid type A (GABA ) receptor γ2(Q390X) subunit (Q351X in the mature peptide) has been associated with the epileptic encephalopathy, Dravet syndrome, and the epilepsy syndrome genetic epilepsy with febrile seizures plus (GEFS+). The mutation generates a premature stop codon that results in translation of a stable truncated and misfolded γ2 subunit that accumulates in neurons, forms intracellular aggregates, disrupts incorporation of γ2 subunits into GABA receptors, and affects trafficking of partnering α and β subunits. Heterozygous Gabrg2 knock-in (KI) mice had reduced cortical inhibition, spike wave discharges on electroencephalography (EEG), a lower seizure threshold to the convulsant drug pentylenetetrazol (PTZ), and spontaneous generalized tonic-clonic seizures. In this proof-of-principal study, we attempted to rescue these deficits in KI mice using a γ2 subunit gene (GABRG2) replacement therapy.
METHODS - We introduced the GABRG2 allele by crossing Gabrg2 KI mice with bacterial artificial chromosome (BAC) transgenic mice overexpressing HA (hemagglutinin)-tagged human γ2 subunits, and compared GABA receptor subunit expression by Western blot and immunohistochemical staining, seizure threshold by monitoring mouse behavior after PTZ-injection, and thalamocortical inhibition and network oscillation by slice recording.
RESULTS - Compared to KI mice, adult mice carrying both mutant allele and transgene had increased wild-type γ2 and partnering α1 and β2/3 subunits, increased miniature inhibitory postsynaptic current (mIPSC) amplitudes recorded from layer VI cortical neurons, reduced thalamocortical network oscillations, and higher PTZ seizure threshold.
SIGNIFICANCE - Based on these results we suggest that seizures in a genetic epilepsy syndrome caused by epilepsy mutant γ2(Q390X) subunits with dominant negative effects could be rescued potentially by overexpression of wild-type γ2 subunits.
Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
1 Communities
0 Members
0 Resources
21 MeSH Terms
Sex Differences in Brain Regions Modulating Pain Among Older Adults: A Cross-Sectional Resting State Functional Connectivity Study.
Monroe TB, Fillingim RB, Bruehl SP, Rogers BP, Dietrich MS, Gore JC, Atalla SW, Cowan RL
(2018) Pain Med 19: 1737-1747
MeSH Terms: Aged, Brain, Cross-Sectional Studies, Female, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Neural Pathways, Pain, Pain Threshold, Rest, Sex Characteristics
Show Abstract · Added March 19, 2018
Objective - A long-standing hypothesis is that when compared with males, females may be at increased risk of experiencing greater pain sensitivity and unpleasantness. The purpose of this study was to examine sex differences in pain psychophysics and resting state functional connectivity (RSFC) in core pain regions in an age- and sex-matched sample of healthy older adults.
Design - Between groups, cross-sectional.
Setting - Vanderbilt University and Medical Center.
Subjects - The sample in the analyses reported here consisted of 19 cognitively intact males matched with 19 cognitively intact females of similar ages (median ages: females = 70 years, males = 68 years).
Methods - Psychophysical assessment of experimental thermal pain and RSFC.
Results - There were no significant differences in perceptual thresholds or unpleasantness ratings in response to thermal stimuli. Older males showed greater RSFC between the affective and sensory networks and between affective and descending modulatory networks. Conversely, older females showed greater RSFC between the descending modulatory network and both sensory and affective networks. The strongest evidence for sex differences emerged in the associations of thermal pain with RSFC between the anterior cingulate cortex (ACC) and amygdala and between the ACC and periaqueductal gray matter in older females relative to older males.
Conclusions - We found no differences in pain sensitivity or pain affect between older males and older females. Additionally, we found that older females exhibited a greater association between thermal pain sensitivity and RSFC signal between regions typically associated with pain affect and the descending modulatory system. One interpretation of these findings is that older females may better engage the descending pain modulatory system. This better engagement possibly translates into older females having similar perceptual thresholds for temperature sensitivity and unpleasantness associated with mild and moderate pain. These findings contrast with studies demonstrating that younger females find thermal pain more sensitive and more unpleasant.
0 Communities
1 Members
0 Resources
13 MeSH Terms