Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 113

Publication Record

Connections

Patient-Specific iPSC-Derived Endothelial Cells Uncover Pathways that Protect against Pulmonary Hypertension in BMPR2 Mutation Carriers.
Gu M, Shao NY, Sa S, Li D, Termglinchan V, Ameen M, Karakikes I, Sosa G, Grubert F, Lee J, Cao A, Taylor S, Ma Y, Zhao Z, Chappell J, Hamid R, Austin ED, Gold JD, Wu JC, Snyder MP, Rabinovitch M
(2017) Cell Stem Cell 20: 490-504.e5
MeSH Terms: Base Sequence, Bone Morphogenetic Protein 4, Bone Morphogenetic Protein Receptors, Type II, Cell Adhesion, Cell Movement, Cell Shape, Cell Survival, Endothelial Cells, Gene Editing, Gene Expression Regulation, Heterozygote, Humans, Hypertension, Pulmonary, Induced Pluripotent Stem Cells, Mutation, Neovascularization, Physiologic, Phosphorylation, Sequence Analysis, RNA, Signal Transduction, Smad Proteins, p38 Mitogen-Activated Protein Kinases
Show Abstract · Added February 21, 2017
In familial pulmonary arterial hypertension (FPAH), the autosomal dominant disease-causing BMPR2 mutation is only 20% penetrant, suggesting that genetic variation provides modifiers that alleviate the disease. Here, we used comparison of induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) from three families with unaffected mutation carriers (UMCs), FPAH patients, and gender-matched controls to investigate this variation. Our analysis identified features of UMC iPSC-ECs related to modifiers of BMPR2 signaling or to differentially expressed genes. FPAH-iPSC-ECs showed reduced adhesion, survival, migration, and angiogenesis compared to UMC-iPSC-ECs and control cells. The "rescued" phenotype of UMC cells was related to an increase in specific BMPR2 activators and/or a reduction in inhibitors, and the improved cell adhesion could be attributed to preservation of related signaling. The improved survival was related to increased BIRC3 and was independent of BMPR2. Our findings therefore highlight protective modifiers for FPAH that could help inform development of future treatment strategies.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Local Delivery of PHD2 siRNA from ROS-Degradable Scaffolds to Promote Diabetic Wound Healing.
Martin JR, Nelson CE, Gupta MK, Yu F, Sarett SM, Hocking KM, Pollins AC, Nanney LB, Davidson JM, Guelcher SA, Duvall CL
(2016) Adv Healthc Mater 5: 2751-2757
MeSH Terms: Animals, Cell Proliferation, Diabetes Mellitus, Male, Neovascularization, Physiologic, Procollagen-Proline Dioxygenase, RNA, Small Interfering, Rats, Rats, Sprague-Dawley, Reactive Oxygen Species, Tissue Engineering, Tissue Scaffolds, Wound Healing
Show Abstract · Added March 14, 2018
Small interfering RNA (siRNA) delivered from reactive oxygen species-degradable tissue engineering scaffolds promotes diabetic wound healing in rats. Porous poly(thioketal-urethane) scaffolds implanted in diabetic wounds locally deliver siRNA that inhibits the expression of prolyl hydroxylase domain protein 2, thereby increasing the expression of progrowth genes and increasing vasculature, proliferating cells, and tissue development in diabetic wounds.
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
0 Communities
2 Members
0 Resources
13 MeSH Terms
Determination of the CD148-Interacting Region in Thrombospondin-1.
Takahashi K, Sumarriva K, Kim R, Jiang R, Brantley-Sieders DM, Chen J, Mernaugh RL, Takahashi T
(2016) PLoS One 11: e0154916
MeSH Terms: Animals, Binding Sites, Cell Proliferation, Cells, Cultured, Endothelial Cells, Gene Knockdown Techniques, Humans, Immunoblotting, Immunoprecipitation, Mice, Inbred C57BL, Neovascularization, Physiologic, Peptide Fragments, Protein Tyrosine Phosphatases, Receptor-Like Protein Tyrosine Phosphatases, Class 3, Thrombospondin 1
Show Abstract · Added April 26, 2017
CD148 is a transmembrane protein tyrosine phosphatase that is expressed in multiple cell types, including vascular endothelial cells and duct epithelial cells. Previous studies have shown a prominent role of CD148 to reduce growth factor signals and suppress cell proliferation and transformation. Further, we have recently shown that thrombospondin-1 (TSP1) serves as a functionally important ligand for CD148. TSP1 has multiple structural elements and interacts with various cell surface receptors that exhibit differing effects. In order to create the CD148-specific TSP1 fragment, here we investigated the CD148-interacting region in TSP1 using a series of TSP1 fragments and biochemical and biological assays. Our results demonstrate that: 1) CD148 binds to the 1st type 1 repeat in TSP1; 2) Trimeric TSP1 fragments that contain the 1st type repeat inhibit cell proliferation in A431D cells that stably express wild-type CD148 (A431D/CD148wt cells), while they show no effects in A431D cells that lack CD148 or express a catalytically inactive form of CD148. The anti-proliferative effect of the TSP1 fragment in A431D/CD148wt cells was largely abolished by CD148 knockdown and antagonized by the 1st, but not the 2nd and 3rd, type 1 repeat fragment. Furthermore, the trimeric TSP1 fragments containing the 1st type repeat increased the catalytic activity of CD148 and reduced phospho-tyrosine contents of EGFR and ERK1/2, defined CD148 substrates. These effects were not observed in the TSP1 fragments that lack the 1st type 1 repeat. Last, we demonstrate that the trimeric TSP1 fragment containing the 1st type 1 repeat inhibits endothelial cell proliferation in culture and angiogenesis in vivo. These effects were largely abolished by CD148 knockdown or deficiency. Collectively, these findings indicate that the 1st type 1 repeat interacts with CD148, reducing growth factor signals and inhibiting epithelial or endothelial cell proliferation and angiogenesis.
0 Communities
1 Members
0 Resources
15 MeSH Terms
VEGFB/VEGFR1-Induced Expansion of Adipose Vasculature Counteracts Obesity and Related Metabolic Complications.
Robciuc MR, Kivelä R, Williams IM, de Boer JF, van Dijk TH, Elamaa H, Tigistu-Sahle F, Molotkov D, Leppänen VM, Käkelä R, Eklund L, Wasserman DH, Groen AK, Alitalo K
(2016) Cell Metab 23: 712-24
MeSH Terms: Adipose Tissue, Animals, Mice, Inbred C57BL, Neovascularization, Physiologic, Obesity, Vascular Endothelial Growth Factor B, Vascular Endothelial Growth Factor Receptor-2
Show Abstract · Added May 5, 2016
Impaired angiogenesis has been implicated in adipose tissue dysfunction and the development of obesity and associated metabolic disorders. Here, we report the unexpected finding that vascular endothelial growth factor B (VEGFB) gene transduction into mice inhibits obesity-associated inflammation and improves metabolic health without changes in body weight or ectopic lipid deposition. Mechanistically, the binding of VEGFB to VEGF receptor 1 (VEGFR1, also known as Flt1) activated the VEGF/VEGFR2 pathway and increased capillary density, tissue perfusion, and insulin supply, signaling, and function in adipose tissue. Furthermore, endothelial Flt1 gene deletion enhanced the effect of VEGFB, activating the thermogenic program in subcutaneous adipose tissue, which increased the basal metabolic rate, thus preventing diet-induced obesity and related metabolic complications. In obese and insulin-resistant mice, Vegfb gene transfer, together with endothelial Flt1 gene deletion, induced weight loss and mitigated the metabolic complications, demonstrating the therapeutic potential of the VEGFB/VEGFR1 pathway.
Copyright © 2016 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Safety and angiogenic effects of systemic gene delivery of a modified erythropoietin.
de Lucas Cerrillo AM, Bond WS, Rex TS
(2015) Gene Ther 22: 365-73
MeSH Terms: Animals, CHO Cells, Cells, Cultured, Cricetinae, Cricetulus, Endothelium, Vascular, Erythropoiesis, Erythropoietin, Gene Transfer Techniques, Humans, Mice, Mice, Inbred C57BL, Mutation, Missense, Neovascularization, Physiologic, Retinal Vessels
Show Abstract · Added April 2, 2019
Erythropoietin (EPO) is critical for red blood cell production and is also an effective neuroprotective agent. However, it may contribute to pathological angiogenesis. Here we investigate the angiogenic potential of EPO and a mutant form with attenuated erythropoietic activity, EPO-R76E, on primary human retinal microvascular endothelial cells (HRMECs) and in the adult retina. Assays of death, proliferation and tube formation were performed on HRMECs exposed to EPO, EPO-R76E or media alone. Postnatal day-9 wild-type mice were injected intramuscularly with adeno-associated virus vectors expressing either enhanced green fluorescent protein or EpoR76E. At 3 months, levels of EPO-R76E in the eye were quantified, and the health of the retinal vasculature was assessed by fluorescein angiography and isolectin immunolabeling. Immunohistochemistry, histology and electroretinogram (ERG) assessments were performed as measures of retinal health. Neither EPO nor EPO-R76E induced proliferation or tube formation in HRMECs under the conditions used. EPO-R76E decreased HRMEC death in a dose-dependent manner. Long-term systemic gene delivery of EPO-R76E was safe in terms of retinal vasculature, histology and the ERG in vivo. Our results show that EPO-R76E can block HRMEC death, consistent with its role in erythropoiesis and neuroprotection. In addition, long-term gene delivery of EPO-R76E is safe in the adult retina.
0 Communities
1 Members
0 Resources
MeSH Terms
Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways.
Wang S, Amato KR, Song W, Youngblood V, Lee K, Boothby M, Brantley-Sieders DM, Chen J
(2015) Mol Cell Biol 35: 1299-313
MeSH Terms: Adaptor Proteins, Signal Transducing, Animals, Carrier Proteins, Cell Proliferation, Cells, Cultured, Endothelial Cells, Gene Deletion, Human Umbilical Vein Endothelial Cells, Humans, Mechanistic Target of Rapamycin Complex 2, Mice, Multiprotein Complexes, Neovascularization, Physiologic, Phosphorylation, Protein Kinase C-alpha, Proto-Oncogene Proteins c-akt, Rapamycin-Insensitive Companion of mTOR Protein, Regulatory-Associated Protein of mTOR, Signal Transduction, TOR Serine-Threonine Kinases, Vascular Endothelial Growth Factor A
Show Abstract · Added February 15, 2016
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that regulates a diverse array of cellular processes, including cell growth, survival, metabolism, and cytoskeleton dynamics. mTOR functions in two distinct complexes, mTORC1 and mTORC2, whose activities and substrate specificities are regulated by complex specific cofactors, including Raptor and Rictor, respectively. Little is known regarding the relative contribution of mTORC1 versus mTORC2 in vascular endothelial cells. Using mouse models of Raptor or Rictor gene targeting, we discovered that Rictor ablation inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation and assembly in vitro and angiogenesis in vivo, whereas the loss of Raptor had only a modest effect on endothelial cells (ECs). Mechanistically, the loss of Rictor reduced the phosphorylation of AKT, protein kinase Cα (PKCα), and NDRG1 without affecting the mTORC1 pathway. In contrast, the loss of Raptor increased the phosphorylation of AKT despite inhibiting the phosphorylation of S6K1, a direct target of mTORC1. Reconstitution of Rictor-null cells with myristoylated AKT (Myr-AKT) rescued vascular assembly in Rictor-deficient endothelial cells, whereas PKCα rescued proliferation defects. Furthermore, tumor neovascularization in vivo was significantly decreased upon EC-specific Rictor deletion in mice. These data indicate that mTORC2 is a critical signaling node required for VEGF-mediated angiogenesis through the regulation of AKT and PKCα in vascular endothelial cells.
Copyright © 2015, American Society for Microbiology. All Rights Reserved.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Heterogeneity in vascular smooth muscle cell embryonic origin in relation to adult structure, physiology, and disease.
Pfaltzgraff ER, Bader DM
(2015) Dev Dyn 244: 410-6
MeSH Terms: Adult, Animals, Humans, Muscle, Smooth, Vascular, Myocytes, Smooth Muscle, Neovascularization, Physiologic, Organogenesis, Vascular Diseases
Show Abstract · Added September 28, 2015
Regional differences in vascular physiology and disease response exist throughout the vascular tree. While these differences in physiology and disease correspond to regional vascular environmental conditions, there is also compelling evidence that the embryonic origins of the smooth muscle inherent to the vessels may play a role. Here, we review what is known regarding the role of embryonic origin of vascular smooth muscle cells during vascular development. The focus of this review is to highlight the heterogeneity in the origins of vascular smooth muscle cells and the resulting regional physiologies of the vessels. Our goal is to stimulate future investigation into this area and provide a better understanding of vascular organogenesis and disease. .
© 2014 Wiley Periodicals, Inc.
1 Communities
1 Members
0 Resources
8 MeSH Terms
Type III transforming growth factor beta receptor regulates vascular and osteoblast development during palatogenesis.
Hill CR, Jacobs BH, Brown CB, Barnett JV, Goudy SL
(2015) Dev Dyn 244: 122-33
MeSH Terms: Animals, Antigens, Differentiation, Calcification, Physiologic, Gene Expression Regulation, Developmental, Mesoderm, Mice, Mice, Knockout, Neovascularization, Physiologic, Organogenesis, Osteoblasts, Palate, Hard, Proteoglycans, Receptors, Transforming Growth Factor beta
Show Abstract · Added February 19, 2015
BACKGROUND - Cleft palate occurs in up to 1:1,000 live births and is associated with mutations in multiple genes. Palatogenesis involves a complex choreography of palatal shelf elongation, elevation, and fusion. Transforming growth factor β (TGFβ) and bone morphogenetic protein 2 (BMP2) canonical signaling is required during each stage of palate development. The type III TGFβ receptor (TGFβR3) binds all three TGFβ ligands and BMP2, but its contribution to palatogenesis is unknown.
RESULTS - The role of TGFβR3 during palate formation was found to be during palatal shelf elongation and elevation. Tgfbr3(-) (/) (-) embryos displayed reduced palatal shelf width and height, changes in proliferation and apoptosis, and reduced vascular and osteoblast differentiation. Abnormal vascular plexus organization as well as aberrant expression of arterial (Notch1, Alk1), venous (EphB4), and lymphatic (Lyve1) markers was also observed. Decreased osteoblast differentiation factors (Runx2, alk phos, osteocalcin, col1A1, and col1A2) demonstrated poor mesenchymal cell commitment to the osteoblast lineage within the maxilla and palatal shelves in Tgfbr3(-) (/) (-) embryos. Additionally, in vitro bone mineralization induced by osteogenic medium (OM+BMP2) was insufficient in Tgfbr3(-) (/) (-) palatal mesenchyme, but mineralization was rescued by overexpression of TGFβR3.
CONCLUSIONS - These data reveal a critical, previously unrecognized role for TGFβR3 in vascular and osteoblast development during palatogenesis.
© 2014 Wiley Periodicals, Inc.
0 Communities
2 Members
0 Resources
13 MeSH Terms
Biodegradable lysine-derived polyurethane scaffolds promote healing in a porcine full-thickness excisional wound model.
Adolph EJ, Pollins AC, Cardwell NL, Davidson JM, Guelcher SA, Nanney LB
(2014) J Biomater Sci Polym Ed 25: 1973-85
MeSH Terms: Animals, Apoptosis, Biocompatible Materials, Cell Proliferation, Humans, Lysine, Macrophages, Mechanical Phenomena, Neovascularization, Physiologic, Polyurethanes, Skin, Structure-Activity Relationship, Swine, Tissue Scaffolds, Wound Healing
Show Abstract · Added February 23, 2016
Lysine-derived polyurethane scaffolds (LTI-PUR) support cutaneous wound healing in loose-skinned small animal models. Due to the physiological and anatomical similarities of human and pig skin, we investigated the capacity of LTI-PUR scaffolds to support wound healing in a porcine excisional wound model. Modifications to scaffold design included the addition of carboxymethylcellulose (CMC) as a porogen to increase interconnectivity and an additional plasma treatment (Plasma) to decrease surface hydrophobicity. All LTI-PUR scaffold and formulations supported cellular infiltration and were biodegradable. At 15 days, CMC and plasma scaffolds simulated increased macrophages more so than LTI PUR or no treatment. This response was consistent with macrophage-mediated oxidative degradation of the lysine component of the scaffolds. Cell proliferation was similar in control and scaffold-treated wounds at 8 and 15 days. Neither apoptosis nor blood vessel area density showed significant differences in the presence of any of the scaffold variations compared with untreated wounds, providing further evidence that these synthetic biomaterials had no adverse effects on those pivotal wound healing processes. During the critical phase of granulation tissue formation in full thickness porcine excisional wounds, LTI-PUR scaffolds supported tissue infiltration, while undergoing biodegradation. Modifications to scaffold fabrication modify the reparative process. This study emphasizes the biocompatibility and favorable cellular responses of PUR scaffolding formulations in a clinically relevant animal model.
1 Communities
1 Members
0 Resources
15 MeSH Terms
Uncoupling angiogenesis and inflammation in peripheral artery disease with therapeutic peptide-loaded microgels.
Zachman AL, Wang X, Tucker-Schwartz JM, Fitzpatrick ST, Lee SH, Guelcher SA, Skala MC, Sung HJ
(2014) Biomaterials 35: 9635-48
MeSH Terms: Angiogenesis Inducing Agents, Animals, Anti-Inflammatory Agents, Cell Line, Drug Carriers, Human Umbilical Vein Endothelial Cells, Inflammation, Injections, Matrix Metalloproteinase 9, Matrix Metalloproteinase Inhibitors, Mice, Neovascularization, Physiologic, Oligopeptides, Peripheral Arterial Disease, Polyesters, Tumor Necrosis Factor-alpha
Show Abstract · Added October 30, 2014
Peripheral artery disease (PAD) is characterized by vessel occlusion and ischemia in the limbs. Treatment for PAD with surgical interventions has been showing limited success. Moreover, recent clinical trials with treatment of angiogenic growth factors proved ineffective as increased angiogenesis triggered severe inflammation in a proportionally coupled fashion. Hence, the overarching goal of this research was to address this issue by developing a biomaterial system that enables controlled, dual delivery of pro-angiogenic C16 and anti-inflammatory Ac-SDKP peptides in a minimally-invasive way. To achieve the goal, a peptide-loaded injectable microgel system was developed and tested in a mouse model of PAD. When delivered through multiple, low volume injections, the combination of C16 and Ac-SDKP peptides promoted angiogenesis, muscle regeneration, and perfusion recovery, while minimizing detrimental inflammation. Additionally, this peptide combination regulated inflammatory TNF-α pathways independently of MMP-9 mediated pathways of angiogenesis in vitro, suggesting a potential mechanism by which angiogenic and inflammatory responses can be uncoupled in the context of PAD. This study demonstrates a translatable potential of the dual peptide-loaded injectable microgel system for PAD treatment.
Copyright © 2014 Elsevier Ltd. All rights reserved.
1 Communities
3 Members
0 Resources
16 MeSH Terms