Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 31

Publication Record

Connections

Serotonin transporter inhibition and 5-HT receptor activation drive loss of cocaine-induced locomotor activation in DAT Val559 mice.
Stewart A, Davis GL, Gresch PJ, Katamish RM, Peart R, Rabil MJ, Gowrishankar R, Carroll FI, Hahn MK, Blakely RD
(2019) Neuropsychopharmacology 44: 994-1006
MeSH Terms: Animals, Behavior, Animal, Cocaine, Conditioning, Classical, Disease Models, Animal, Dopamine, Dopamine Plasma Membrane Transport Proteins, Dopamine Uptake Inhibitors, Fluoxetine, Locomotion, Methylphenidate, Mice, Mice, 129 Strain, Mice, Inbred C57BL, Mice, Transgenic, Neostriatum, Receptor, Serotonin, 5-HT2C, Serotonin Plasma Membrane Transport Proteins, Serotonin Uptake Inhibitors
Show Abstract · Added January 8, 2019
Dopamine (DA) signaling dysfunction is believed to contribute to multiple neuropsychiatric disorders including attention-deficit/hyperactivity disorder (ADHD). The rare DA transporter (DAT) coding substitution Ala559Val found in subjects with ADHD, bipolar disorder and autism, promotes anomalous DA efflux in vitro and, in DAT Val559 mice, leads to increased reactivity to imminent handling, waiting impulsivity, and enhanced motivation for reward. Here, we report that, in contrast to amphetamine and methylphenidate, which induce significant locomotor activation, cocaine administration to these mice elicits no locomotor effects, despite retention of conditioned place preference (CPP). Additionally, cocaine fails to elevate extracellular DA. Given that amphetamine and methylphenidate, unlike cocaine, lack high-affinity interactions with the serotonin (5-HT) transporter (SERT), we hypothesized that the lack of cocaine-induced hyperlocomotion in DAT Val559 mice arises from SERT blockade and augmented 5-HT signaling relative to cocaine actions on wildtype animals. Consistent with this idea, the SERT blocker fluoxetine abolished methylphenidate-induced locomotor activity in DAT Val559 mice, mimicking the effects seen with cocaine. Additionally, a cocaine analog (RTI-113) with greater selectivity for DAT over SERT retains locomotor activation in DAT Val559 mice. Furthermore, genetic elimination of high-affinity cocaine interactions at SERT in DAT Val559 mice, or specific inhibition of 5-HT receptors in these animals, restored cocaine-induced locomotion, but did not restore cocaine-induced elevations of extracellular DA. Our findings reveal a significant serotonergic plasticity arising in the DAT Val559 model that involves enhanced 5-HT signaling, acting independently of striatal DA release, capable of suppressing the activity of cocaine-sensitive motor circuits.
1 Communities
0 Members
0 Resources
19 MeSH Terms
Brief exposure to obesogenic diet disrupts brain dopamine networks.
Barry RL, Byun NE, Williams JM, Siuta MA, Tantawy MN, Speed NK, Saunders C, Galli A, Niswender KD, Avison MJ
(2018) PLoS One 13: e0191299
MeSH Terms: Amphetamine, Animals, Brain, Diet, High-Fat, Dopamine, Insulin, Male, Neostriatum, Nerve Net, Obesity, Rats, Rats, Sprague-Dawley, Receptors, Dopamine D2, Signal Transduction, Time Factors
Show Abstract · Added April 11, 2019
OBJECTIVE - We have previously demonstrated that insulin signaling, through the downstream signaling kinase Akt, is a potent modulator of dopamine transporter (DAT) activity, which fine-tunes dopamine (DA) signaling at the synapse. This suggests a mechanism by which impaired neuronal insulin receptor signaling, a hallmark of diet-induced obesity, may contribute to impaired DA transmission. We tested whether a short-term (two-week) obesogenic high-fat (HF) diet could reduce striatal Akt activity, a marker of central insulin, receptor signaling and blunt striatal and dopaminergic network responsiveness to amphetamine (AMPH).
METHODS - We examined the effects of a two-week HF diet on striatal DAT activity in rats, using AMPH as a probe in a functional magnetic resonance imaging (fMRI) assay, and mapped the disruption in AMPH-evoked functional connectivity between key dopaminergic targets and their projection areas using correlation and permutation analyses. We used phosphorylation of the Akt substrate GSK3α in striatal extracts as a measure of insulin receptor signaling. Finally, we confirmed the impact of HF diet on striatal DA D2 receptor (D2R) availability using [18F]fallypride positron emission tomography (PET).
RESULTS - We found that rats fed a HF diet for only two weeks have reductions in striatal Akt activity, a marker of decreased striatal insulin receptor signaling and blunted striatal responsiveness to AMPH. HF feeding also reduced interactions between elements of the mesolimbic (nucleus accumbens-anterior cingulate) and sensorimotor circuits (caudate/putamen-thalamus-sensorimotor cortex) implicated in hedonic feeding. D2R availability was reduced in HF-fed animals.
CONCLUSION - These studies support the hypothesis that central insulin signaling and dopaminergic neurotransmission are already altered after short-term HF feeding. Because AMPH induces DA efflux and brain activation, in large part via DAT, these findings suggest that blunted central nervous system insulin receptor signaling through a HF diet can impair DA homeostasis, thereby disrupting cognitive and reward circuitry involved in the regulation of hedonic feeding.
0 Communities
1 Members
0 Resources
MeSH Terms
α- and α-Adrenoceptors as Potential Targets for Dopamine and Dopamine Receptor Ligands.
Sánchez-Soto M, Casadó-Anguera V, Yano H, Bender BJ, Cai NS, Moreno E, Canela EI, Cortés A, Meiler J, Casadó V, Ferré S
(2018) Mol Neurobiol 55: 8438-8454
MeSH Terms: Adenylyl Cyclases, Animals, Cerebral Cortex, Clonidine, Dopamine, Extracellular Signal-Regulated MAP Kinases, GTP-Binding Proteins, HEK293 Cells, Humans, Idazoxan, Ligands, Neostriatum, Norepinephrine, Phosphorylation, Quinpirole, Receptors, Adrenergic, alpha-2, Receptors, Dopamine, Sheep, Tetrahydronaphthalenes
Show Abstract · Added March 21, 2020
The poor norepinephrine innervation and high density of Gi/o-coupled α- and α-adrenoceptors in the striatum and the dense striatal dopamine innervation have prompted the possibility that dopamine could be an effective adrenoceptor ligand. Nevertheless, the reported adrenoceptor agonistic properties of dopamine are still inconclusive. In this study, we analyzed the binding of norepinephrine, dopamine, and several compounds reported as selective dopamine D-like receptor ligands, such as the D receptor agonist 7-OH-PIPAT and the D receptor agonist RO-105824, to α-adrenoceptors in cortical and striatal tissue, which express α-adrenoceptors and both α- and α-adrenoceptors, respectively. The affinity of dopamine for α-adrenoceptors was found to be similar to that for D-like and D-like receptors. Moreover, the exogenous dopamine receptor ligands also showed high affinity for α- and α-adrenoceptors. Their ability to activate Gi/o proteins through α- and α-adrenoceptors was also analyzed in transfected cells with bioluminescent resonance energy transfer techniques. The relative ligand potencies and efficacies were dependent on the Gi/o protein subtype. Furthermore, dopamine binding to α-adrenoceptors was functional, inducing changes in dynamic mass redistribution, adenylyl cyclase activity, and ERK1/2 phosphorylation. Binding events were further studied with computer modeling of ligand docking. Docking of dopamine at α- and α-adrenoceptors was nearly identical to its binding to the crystallized D receptor. Therefore, we provide conclusive evidence that α- and α-adrenoceptors are functional receptors for norepinephrine, dopamine, and other previously assumed selective D-like receptor ligands, which calls for revisiting previous studies with those ligands.
0 Communities
1 Members
0 Resources
MeSH Terms
Manganese and the Insulin-IGF Signaling Network in Huntington's Disease and Other Neurodegenerative Disorders.
Bryan MR, Bowman AB
(2017) Adv Neurobiol 18: 113-142
MeSH Terms: Alzheimer Disease, Amyotrophic Lateral Sclerosis, Animals, Autophagy, Brain, Disease Models, Animal, Humans, Huntingtin Protein, Huntington Disease, Insulin, Manganese, Mitochondria, Neostriatum, Neural Stem Cells, Neurodegenerative Diseases, Parkinson Disease, Reactive Oxygen Species, Signal Transduction, Somatomedins
Show Abstract · Added April 11, 2018
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease resulting in motor impairment and death in patients. Recently, several studies have demonstrated insulin or insulin-like growth factor (IGF) treatment in models of HD, resulting in potent amelioration of HD phenotypes via modulation of the PI3K/AKT/mTOR pathways. Administration of IGF and insulin can rescue microtubule transport, metabolic function, and autophagy defects, resulting in clearance of Huntingtin (HTT) aggregates, restoration of mitochondrial function, amelioration of motor abnormalities, and enhanced survival. Manganese (Mn) is an essential metal to all biological systems but, in excess, can be toxic. Interestingly, several studies have revealed the insulin-mimetic effects of Mn-demonstrating Mn can activate several of the same metabolic kinases and increase peripheral and neuronal insulin and IGF-1 levels in rodent models. Separate studies have shown mouse and human striatal neuroprogenitor cell (NPC) models exhibit a deficit in cellular Mn uptake, indicative of a Mn deficiency. Furthermore, evidence from the literature reveals a striking overlap between cellular consequences of Mn deficiency (i.e., impaired function of Mn-dependent enzymes) and known HD endophenotypes including excitotoxicity, increased reactive oxygen species (ROS) accumulation, and decreased mitochondrial function. Here we review published evidence supporting a hypothesis that (1) the potent effect of IGF or insulin treatment on HD models, (2) the insulin-mimetic effects of Mn, and (3) the newly discovered Mn-dependent perturbations in HD may all be functionally related. Together, this review will present the intriguing possibility that intricate regulatory cross-talk exists between Mn biology and/or toxicology and the insulin/IGF signaling pathways which may be deeply connected to HD pathology and, perhaps, other neurodegenerative diseases (NDDs) and other neuropathological conditions.
0 Communities
1 Members
0 Resources
MeSH Terms
M4 Muscarinic Receptor Signaling Ameliorates Striatal Plasticity Deficits in Models of L-DOPA-Induced Dyskinesia.
Shen W, Plotkin JL, Francardo V, Ko WK, Xie Z, Li Q, Fieblinger T, Wess J, Neubig RR, Lindsley CW, Conn PJ, Greengard P, Bezard E, Cenci MA, Surmeier DJ
(2015) Neuron 88: 762-73
MeSH Terms: Allosteric Regulation, Animals, Cerebral Cortex, Disease Models, Animal, Dopamine Agents, Dyskinesia, Drug-Induced, Glutamic Acid, Levodopa, Long-Term Potentiation, Long-Term Synaptic Depression, Macaca mulatta, Mice, Mice, Transgenic, Neostriatum, Neuronal Plasticity, Neurons, Parkinsonian Disorders, RGS Proteins, Receptor, Muscarinic M4, Signal Transduction
Show Abstract · Added February 18, 2016
A balanced interaction between dopaminergic and cholinergic signaling in the striatum is critical to goal-directed behavior. But how this interaction modulates corticostriatal synaptic plasticity underlying learned actions remains unclear--particularly in direct-pathway spiny projection neurons (dSPNs). Our studies show that in dSPNs, endogenous cholinergic signaling through M4 muscarinic receptors (M4Rs) promoted long-term depression of corticostriatal glutamatergic synapses, by suppressing regulator of G protein signaling type 4 (RGS4) activity, and blocked D1 dopamine receptor dependent long-term potentiation (LTP). Furthermore, in a mouse model of L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) in Parkinson's disease (PD), boosting M4R signaling with positive allosteric modulator (PAM) blocked aberrant LTP in dSPNs, enabled LTP reversal, and attenuated dyskinetic behaviors. An M4R PAM also was effective in a primate LID model. Taken together, these studies identify an important signaling pathway controlling striatal synaptic plasticity and point to a novel pharmacological strategy for alleviating LID in PD patients.
Copyright © 2015 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Relationship between impulsivity, prefrontal anticipatory activation, and striatal dopamine release during rewarded task performance.
Weiland BJ, Heitzeg MM, Zald D, Cummiford C, Love T, Zucker RA, Zubieta JK
(2014) Psychiatry Res 223: 244-52
MeSH Terms: Adult, Anticipation, Psychological, Carbon Radioisotopes, Corpus Striatum, Dopamine, Dopamine Antagonists, Female, Humans, Impulsive Behavior, Income, Magnetic Resonance Imaging, Middle Aged, Neostriatum, Nucleus Accumbens, Positron-Emission Tomography, Prefrontal Cortex, Raclopride, Receptors, Dopamine D2, Receptors, Dopamine D3, Reward, Task Performance and Analysis
Show Abstract · Added April 6, 2017
Impulsivity, and in particular the negative urgency aspect of this trait, is associated with poor inhibitory control when experiencing negative emotion. Individual differences in aspects of impulsivity have been correlated with striatal dopamine D2/D3 receptor availability and function. This multi-modal pilot study used both positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) to evaluate dopaminergic and neural activity, respectively, using modified versions of the monetary incentive delay task. Twelve healthy female subjects underwent both scans and completed the NEO Personality Inventory Revised to assess Impulsiveness (IMP). We examined the relationship between nucleus accumbens (NAcc) dopaminergic incentive/reward release, measured as a change in D2/D3 binding potential between neutral and incentive/reward conditions with [(11)C]raclopride PET, and blood oxygen level-dependent (BOLD) activation elicited during the anticipation of rewards, measured with fMRI. Left NAcc incentive/reward dopaminergic release correlated with anticipatory reward activation within the medial prefrontal cortex (mPFC), left angular gyrus, mammillary bodies, and left superior frontal cortex. Activation in the mPFC negatively correlated with IMP and mediated the relationship between IMP and incentive/reward dopaminergic release in left NAcc. The mPFC, with a regulatory role in learning and valuation, may influence dopamine incentive/reward release.
Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
21 MeSH Terms
The metabotropic glutamate receptor 8 agonist (S)-3,4-DCPG reverses motor deficits in prolonged but not acute models of Parkinson's disease.
Johnson KA, Jones CK, Tantawy MN, Bubser M, Marvanova M, Ansari MS, Baldwin RM, Conn PJ, Niswender CM
(2013) Neuropharmacology 66: 187-95
MeSH Terms: Aminobutyrates, Animals, Benzoates, Catalepsy, Disease Models, Animal, Dopamine, Dopamine D2 Receptor Antagonists, Dose-Response Relationship, Drug, Dyskinesia, Drug-Induced, Excitatory Amino Acid Agonists, Forelimb, Glycine, Haloperidol, Injections, Intraventricular, Male, Neostriatum, Parkinsonian Disorders, Rats, Rats, Sprague-Dawley, Receptors, Dopamine D2, Receptors, Metabotropic Glutamate, Reserpine, Time Factors
Show Abstract · Added February 19, 2015
Metabotropic glutamate receptors (mGlus) are 7 Transmembrane Spanning Receptors (7TMs) that are differentially expressed throughout the brain and modulate synaptic transmission at both excitatory and inhibitory synapses. Recently, mGlus have been implicated as therapeutic targets for many disorders of the central nervous system, including Parkinson's disease (PD). Previous studies have shown that nonselective agonists of group III mGlus have antiparkinsonian effects in several animal models of PD, suggesting that these receptors represent promising targets for treating the motor symptoms of PD. However, the relative contributions of different group III mGlu subtypes to these effects have not been fully elucidated. Here we report that intracerebroventricular (icv) administration of the mGlu(8)-selective agonist (S)-3,4-dicarboxyphenylglycine (DCPG [ 2.5, 10, or 30 nmol]) does not alleviate motor deficits caused by acute (2 h) treatment with haloperidol or reserpine. However, following prolonged pretreatment with haloperidol (three doses evenly spaced over 18-20 h) or reserpine (18-20 h), DCPG robustly reverses haloperidol-induced catalepsy and reserpine-induced akinesia. Furthermore, DCPG (10 nmol, icv) reverses the long-lasting catalepsy induced by 20 h pretreatment with the decanoate salt of haloperidol. Finally, icv administration of DCPG ameliorates forelimb use asymmetry caused by unilateral 6-hydroxydopamine lesion of substantia nigra dopamine neurons. These findings suggest that mGlu(8) may partially mediate the antiparkinsonian effects of group III mGlu agonists in animal models of PD in which dopamine depletion or blockade of D(2)-like dopamine receptors is prolonged and indicate that selective activation of mGlu(8) may represent a novel therapeutic strategy for alleviating the motor symptoms of PD. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Copyright © 2012 Elsevier Ltd. All rights reserved.
0 Communities
3 Members
0 Resources
23 MeSH Terms
Disease-toxicant interactions in manganese exposed Huntington disease mice: early changes in striatal neuron morphology and dopamine metabolism.
Madison JL, Wegrzynowicz M, Aschner M, Bowman AB
(2012) PLoS One 7: e31024
MeSH Terms: Animals, Dendrites, Dopamine, Environmental Exposure, Genotype, Huntington Disease, Male, Manganese, Mice, Mice, Inbred C57BL, Mice, Transgenic, Multivariate Analysis, Neostriatum, Neurons
Show Abstract · Added May 19, 2014
YAC128 Huntington's disease (HD) transgenic mice accumulate less manganese (Mn) in the striatum relative to wild-type (WT) littermates. We hypothesized that Mn and mutant Huntingtin (HTT) would exhibit gene-environment interactions at the level of neurochemistry and neuronal morphology. Twelve-week-old WT and YAC128 mice were exposed to MnCl(2)-4H(2)O (50 mg/kg) on days 0, 3 and 6. Striatal medium spiny neuron (MSN) morphology, as well as levels of dopamine (DA) and its metabolites (which are known to be sensitive to Mn-exposure), were analyzed at 13 weeks (7 days from initial exposure) and 16 weeks (28 days from initial exposure). No genotype-dependent differences in MSN morphology were apparent at 13 weeks. But at 16 weeks, a genotype effect was observed in YAC128 mice, manifested by an absence of the wild-type age-dependent increase in dendritic length and branching complexity. In addition, genotype-exposure interaction effects were observed for dendritic complexity measures as a function of distance from the soma, where only YAC128 mice were sensitive to Mn exposure. Furthermore, striatal DA levels were unaltered at 13 weeks by genotype or Mn exposure, but at 16 weeks, both Mn exposure and the HD genotype were associated with quantitatively similar reductions in DA and its metabolites. Interestingly, Mn exposure of YAC128 mice did not further decrease DA or its metabolites versus YAC128 vehicle exposed or Mn exposed WT mice. Taken together, these results demonstrate Mn-HD disease-toxicant interactions at the onset of striatal dendritic neuropathology in YAC128 mice. Our results identify the earliest pathological change in striatum of YAC128 mice as being between 13 to 16 weeks. Finally, we show that mutant HTT suppresses some Mn-dependent changes, such as decreased DA levels, while it exacerbates others, such as dendritic pathology.
1 Communities
1 Members
0 Resources
14 MeSH Terms
Changes in the striatal proteome of YAC128Q mice exhibit gene-environment interactions between mutant huntingtin and manganese.
Wegrzynowicz M, Holt HK, Friedman DB, Bowman AB
(2012) J Proteome Res 11: 1118-32
MeSH Terms: Analysis of Variance, Animals, Blotting, Western, Electrophoresis, Gel, Two-Dimensional, Gene-Environment Interaction, Huntingtin Protein, Male, Manganese, Mice, Mice, Transgenic, Neostriatum, Nerve Tissue Proteins, Nuclear Proteins, Principal Component Analysis, Proteome, Proteomics
Show Abstract · Added May 19, 2014
Huntington's disease (HD) is a neurodegenerative disorder caused by expansion of a CAG repeat within the Huntingtin (HTT) gene, though the clinical presentation of disease and age-of-onset are strongly influenced by ill-defined environmental factors. We recently reported a gene-environment interaction wherein expression of mutant HTT is associated with neuroprotection against manganese (Mn) toxicity. Here, we are testing the hypothesis that this interaction may be manifested by altered protein expression patterns in striatum, a primary target of both neurodegeneration in HD and neurotoxicity of Mn. To this end, we compared striatal proteomes of wild-type and HD (YAC128Q) mice exposed to vehicle or Mn. Principal component analysis of proteomic data revealed that Mn exposure disrupted a segregation of WT versus mutant proteomes by the major principal component observed in vehicle-exposed mice. Identification of altered proteins revealed novel markers of Mn toxicity, particularly proteins involved in glycolysis, excitotoxicity, and cytoskeletal dynamics. In addition, YAC128Q-dependent changes suggest that axonal pathology may be an early feature in HD pathogenesis. Finally, for several proteins, genotype-specific responses to Mn were observed. These differences include increased sensitivity to exposure in YAC128Q mice (UBQLN1) and amelioration of some mutant HTT-induced alterations (SAE1, ENO1). We conclude that the interaction of Mn and mutant HTT may suppress proteomic phenotypes of YAC128Q mice, which could reveal potential targets in novel treatment strategies for HD.
1 Communities
1 Members
0 Resources
16 MeSH Terms
Identification and validation of novel spinophilin-associated proteins in rodent striatum using an enhanced ex vivo shotgun proteomics approach.
Baucum AJ, Jalan-Sakrikar N, Jiao Y, Gustin RM, Carmody LC, Tabb DL, Ham AJ, Colbran RJ
(2010) Mol Cell Proteomics 9: 1243-59
MeSH Terms: Actinin, Aging, Amino Acid Sequence, Animals, Cell Line, Gene Knockout Techniques, Humans, Immunoprecipitation, Mass Spectrometry, Mice, Microfilament Proteins, Molecular Sequence Data, Multiprotein Complexes, Neostriatum, Nerve Tissue Proteins, Protein Binding, Protein Transport, Proteomics, Rats, Reproducibility of Results, Solubility, Subcellular Fractions
Show Abstract · Added June 21, 2013
Spinophilin regulates excitatory postsynaptic function and morphology during development by virtue of its interactions with filamentous actin, protein phosphatase 1, and a plethora of additional signaling proteins. To provide insight into the roles of spinophilin in mature brain, we characterized the spinophilin interactome in subcellular fractions solubilized from adult rodent striatum by using a shotgun proteomics approach to identify proteins in spinophilin immune complexes. Initial analyses of samples generated using a mouse spinophilin antibody detected 23 proteins that were not present in an IgG control sample; however, 12 of these proteins were detected in complexes isolated from spinophilin knock-out tissue. A second screen using two different spinophilin antibodies and either knock-out or IgG controls identified a total of 125 proteins. The probability of each protein being specifically associated with spinophilin in each sample was calculated, and proteins were ranked according to a chi(2) analysis of the probabilities from analyses of multiple samples. Spinophilin and the known associated proteins neurabin and multiple isoforms of protein phosphatase 1 were specifically detected. Multiple, novel, spinophilin-associated proteins (myosin Va, calcium/calmodulin-dependent protein kinase II, neurofilament light polypeptide, postsynaptic density 95, alpha-actinin, and densin) were then shown to interact with GST fusion proteins containing fragments of spinophilin. Additional biochemical and transfected cell imaging studies showed that alpha-actinin and densin directly interact with residues 151-300 and 446-817, respectively, of spinophilin. Taken together, we have developed a multi-antibody, shotgun proteomics approach to characterize protein interactomes in native tissues, delineating the importance of knock-out tissue controls and providing novel insights into the nature and function of the spinophilin interactome in mature striatum.
0 Communities
3 Members
0 Resources
22 MeSH Terms