Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 270

Publication Record

Connections

Loss of solute carrier family 7 member 2 exacerbates inflammation-associated colon tumorigenesis.
Coburn LA, Singh K, Asim M, Barry DP, Allaman MM, Al-Greene NT, Hardbower DM, Polosukhina D, Williams CS, Delgado AG, Piazuelo MB, Washington MK, Gobert AP, Wilson KT
(2019) Oncogene 38: 1067-1079
MeSH Terms: Amino Acid Transport Systems, Basic, Animals, Azoxymethane, Cell Line, Tumor, Cell Transformation, Neoplastic, Colonic Neoplasms, Inflammation, Inflammatory Bowel Diseases, Mice, Mice, Knockout, Neoplasm Proteins
Show Abstract · Added September 12, 2018
Solute carrier family 7 member 2 (SLC7A2, also known as CAT2) is an inducible transporter of the semi-essential amino acid L-arginine (L-Arg), which has been implicated in wound repair. We have reported that both SLC7A2 expression and L-Arg availability are decreased in colonic tissues from inflammatory bowel disease patients and that mice lacking Slc7a2 exhibit a more severe disease course when exposed to dextran sulfate sodium (DSS) compared to wild-type (WT) mice. Here, we present evidence that SLC7A2 plays a role in modulating colon tumorigenesis in the azoxymethane (AOM)-DSS model of colitis-associated carcinogenesis (CAC). SLC7A2 was localized predominantly to colonic epithelial cells in WT mice. Utilizing the AOM-DSS model, Slc7a2 mice had significantly increased tumor number, burden, and risk of high-grade dysplasia vs. WT mice. Tumors from Slc7a2 mice exhibited significantly increased levels of the proinflammatory cytokines/chemokines IL-1β, CXCL1, CXCL5, IL-3, CXCL2, CCL3, and CCL4, but decreased levels of IL-4, CXCL9, and CXCL10 compared to tumors from WT mice. This was accompanied by a shift toward pro-tumorigenic M2 macrophage activation in Slc7a2-deficient mice, as marked by increased colonic CD11bF4/80ARG1 cells with no alteration in CD11bF4/80NOS2 cells by flow cytometry and immunofluorescence microscopy. The shift toward M2 macrophage activation was confirmed in bone marrow-derived macrophages from Slc7a2 mice. In bone marrow chimeras between Slc7a2 and WT mice, the recipient genotype drove the CAC phenotype, suggesting the importance of epithelial SLC7A2 in abrogating neoplastic risk. These data reveal that SLC7A2 has a significant role in the protection from CAC in the setting of chronic colitis, and suggest that the decreased SLC7A2 in inflammatory bowel disease (IBD) may contribute to CAC risk. Strategies to enhance L-Arg availability by supplementing L-Arg and/or increasing L-Arg uptake could represent a therapeutic approach in IBD to reduce the substantial long-term risk of colorectal carcinoma.
0 Communities
3 Members
0 Resources
11 MeSH Terms
Interplay between ER Ca Binding Proteins, STIM1 and STIM2, Is Required for Store-Operated Ca Entry.
Nelson HA, Leech CA, Kopp RF, Roe MW
(2018) Int J Mol Sci 19:
MeSH Terms: 3T3 Cells, Animals, Calcium, Calcium Signaling, Fluorescence Resonance Energy Transfer, Green Fluorescent Proteins, Humans, Membrane Microdomains, Mice, Neoplasm Proteins, ORAI1 Protein, Protein Binding, Stromal Interaction Molecule 1, Stromal Interaction Molecule 2
Show Abstract · Added July 6, 2018
Store-operated calcium entry (SOCE), a fundamentally important homeostatic and Ca signaling pathway in many types of cells, is activated by the direct interaction of stromal interaction molecule 1 (STIM1), an endoplasmic reticulum (ER) Ca-binding protein, with Ca-selective Orai1 channels localized in the plasma membrane. While much is known about the regulation of SOCE by STIM1, the role of stromal interaction molecule 2 (STIM2) in SOCE remains incompletely understood. Here, using clustered regularly interspaced short palindromic repeats -CRISPR associated protein 9 (CRISPR-Cas9) genomic editing and molecular imaging, we investigated the function of STIM2 in NIH 3T3 fibroblast and αT3 cell SOCE. We found that deletion of expression reduced SOCE by more than 90% in NIH 3T3 cells. STIM1 expression levels were unaffected in the null cells. However, quantitative confocal fluorescence imaging demonstrated that in the absence of expression, STIM1 did not translocate or form punctae in plasma membrane-associated ER membrane (PAM) junctions following ER Ca store depletion. Fluorescence resonance energy transfer (FRET) imaging of intact, living cells revealed that the formation of STIM1 and Orai1 complexes in PAM nanodomains was significantly reduced in the knockout cells. Our findings indicate that STIM2 plays an essential role in regulating SOCE in NIH 3T3 and αT3 cells and suggests that dynamic interplay between STIM1 and STIM2 induced by ER Ca store discharge is necessary for STIM1 translocation, its interaction with Orai1, and activation of SOCE.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Autochthonous tumors driven by loss have an ongoing requirement for the RBP2 histone demethylase.
McBrayer SK, Olenchock BA, DiNatale GJ, Shi DD, Khanal J, Jennings RB, Novak JS, Oser MG, Robbins AK, Modiste R, Bonal D, Moslehi J, Bronson RT, Neuberg D, Nguyen QD, Signoretti S, Losman JA, Kaelin WG
(2018) Proc Natl Acad Sci U S A 115: E3741-E3748
MeSH Terms: Alleles, Animals, DNA-Binding Proteins, Echocardiography, Enzyme Activation, Fibroblasts, Genes, Retinoblastoma, Heart Septal Defects, Histone Code, Integrases, Jumonji Domain-Containing Histone Demethylases, Mice, Mice, Inbred C57BL, Molecular Targeted Therapy, Neoplasm Proteins, Pituitary Neoplasms, Recombinant Fusion Proteins, Retinoblastoma Protein, Tamoxifen, Thyroid Neoplasms, Transgenes
Show Abstract · Added April 22, 2018
Inactivation of the retinoblastoma gene () product, pRB, is common in many human cancers. Targeting downstream effectors of pRB that are central to tumorigenesis is a promising strategy to block the growth of tumors harboring loss-of-function mutations. One such effector is retinoblastoma-binding protein 2 (RBP2, also called JARID1A or KDM5A), which encodes an H3K4 demethylase. Binding of pRB to RBP2 has been linked to the ability of pRB to promote senescence and differentiation. Importantly, genetic ablation of RBP2 is sufficient to phenocopy pRB's ability to induce these cellular changes in cell culture experiments. Moreover, germline deletion significantly impedes tumorigenesis in mice. The value of RBP2 as a therapeutic target in cancer, however, hinges on whether loss of RBP2 could block the growth of established tumors as opposed to simply delaying their onset. Here we show that conditional, systemic ablation of RBP2 in tumor-bearing mice is sufficient to slow tumor growth and significantly extend survival without causing obvious toxicity to the host. These findings show that established -null tumors require RBP2 for growth and further credential RBP2 as a therapeutic target in human cancers driven by inactivation.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Molecular physiology and pathophysiology of stromal interaction molecules.
Nelson HA, Roe MW
(2018) Exp Biol Med (Maywood) 243: 451-472
MeSH Terms: Animals, Calcium, Calcium Channels, Calcium Signaling, Cell Line, Endoplasmic Reticulum, Humans, Mice, Neoplasm Proteins, Stromal Interaction Molecule 1, Stromal Interaction Molecule 2
Show Abstract · Added July 6, 2018
Ca release from the endoplasmic reticulum is an important component of Ca signal transduction that controls numerous physiological processes in eukaryotic cells. Release of Ca from the endoplasmic reticulum is coupled to the activation of store-operated Ca entry into cells. Store-operated Ca entry provides Ca for replenishing depleted endoplasmic reticulum Ca stores and a Ca signal that regulates Ca-dependent intracellular biochemical events. Central to connecting discharge of endoplasmic reticulum Ca stores following G protein-coupled receptor activation with the induction of store-operated Ca entry are stromal interaction molecules (STIM1 and STIM2). These highly homologous endoplasmic reticulum transmembrane proteins function as sensors of the Ca concentration within the endoplasmic reticulum lumen and activators of Ca release-activated Ca channels. Emerging evidence indicates that in addition to their role in Ca release-activated Ca channel gating and store-operated Ca entry, STIM1 and STIM2 regulate other cellular signaling events. Recent studies have shown that disruption of STIM expression and function is associated with the pathogenesis of several diseases including autoimmune disorders, cancer, cardiovascular disease, and myopathies. Here, we provide an overview of the latest developments in the molecular physiology and pathophysiology of STIM1 and STIM2. Impact statement Intracellular Ca signaling is a fundamentally important regulator of cell physiology. Recent studies have revealed that Ca-binding stromal interaction molecules (Stim1 and Stim2) expressed in the membrane of the endoplasmic reticulum (ER) are essential components of eukaryote Ca signal transduction that control the activity of ion channels and other signaling effectors present in the plasma membrane. This review summarizes the most recent information on the molecular physiology and pathophysiology of stromal interaction molecules. We anticipate that the work presented in our review will provide new insights into molecular interactions that participate in interorganelle signaling crosstalk, cell function, and the pathogenesis of human diseases.
0 Communities
1 Members
0 Resources
11 MeSH Terms
A multi-stage genome-wide association study of uterine fibroids in African Americans.
Hellwege JN, Jeff JM, Wise LA, Gallagher CS, Wellons M, Hartmann KE, Jones SF, Torstenson ES, Dickinson S, Ruiz-Narváez EA, Rohland N, Allen A, Reich D, Tandon A, Pasaniuc B, Mancuso N, Im HK, Hinds DA, Palmer JR, Rosenberg L, Denny JC, Roden DM, Stewart EA, Morton CC, Kenny EE, Edwards TL, Velez Edwards DR
(2017) Hum Genet 136: 1363-1373
MeSH Terms: Adult, African Americans, Alleles, Cell Adhesion Molecules, Female, Gene Expression Regulation, Neoplastic, Gene Frequency, Genetic Loci, Genome-Wide Association Study, Guanine Nucleotide Exchange Factors, Humans, Leiomyoma, Middle Aged, Neoplasm Proteins, Risk Factors, Uterine Neoplasms
Show Abstract · Added March 14, 2018
Uterine fibroids are benign tumors of the uterus affecting up to 77% of women by menopause. They are the leading indication for hysterectomy, and account for $34 billion annually in the United States. Race/ethnicity and age are the strongest known risk factors. African American (AA) women have higher prevalence, earlier onset, and larger and more numerous fibroids than European American women. We conducted a multi-stage genome-wide association study (GWAS) of fibroid risk among AA women followed by in silico genetically predicted gene expression profiling of top hits. In Stage 1, cases and controls were confirmed by pelvic imaging, genotyped and imputed to 1000 Genomes. Stage 2 used self-reported fibroid and GWAS data from 23andMe, Inc. and the Black Women's Health Study. Associations with fibroid risk were modeled using logistic regression adjusted for principal components, followed by meta-analysis of results. We observed a significant association among 3399 AA cases and 4764 AA controls at rs739187 (risk-allele frequency = 0.27) in CYTH4 (OR (95% confidence interval) = 1.23 (1.16-1.30), p value = 7.82 × 10). Evaluation of the genetic association results with MetaXcan identified lower predicted gene expression of CYTH4 in thyroid tissue as significantly associated with fibroid risk (p value = 5.86 × 10). In this first multi-stage GWAS for fibroids among AA women, we identified a novel risk locus for fibroids within CYTH4 that impacts gene expression in thyroid and has potential biological relevance for fibroids.
0 Communities
2 Members
0 Resources
16 MeSH Terms
CD318 is a ligand for CD6.
Enyindah-Asonye G, Li Y, Ruth JH, Spassov DS, Hebron KE, Zijlstra A, Moasser MM, Wang B, Singer NG, Cui H, Ohara RA, Rasmussen SM, Fox DA, Lin F
(2017) Proc Natl Acad Sci U S A 114: E6912-E6921
MeSH Terms: A549 Cells, Animals, Antigens, CD, Antigens, Differentiation, T-Lymphocyte, Antigens, Neoplasm, Arthritis, Rheumatoid, Cell Adhesion Molecules, Cell Line, Cell Line, Tumor, Encephalomyelitis, Autoimmune, Experimental, Humans, Ligands, Membrane Glycoproteins, Mice, Inbred C57BL, Mice, Knockout, Neoplasm Proteins, Synovial Membrane, T-Lymphocytes
Show Abstract · Added March 22, 2018
It has been proposed that CD6, an important regulator of T cells, functions by interacting with its currently identified ligand, CD166, but studies performed during the treatment of autoimmune conditions suggest that the CD6-CD166 interaction might not account for important functions of CD6 in autoimmune diseases. The antigen recognized by mAb 3A11 has been proposed as a new CD6 ligand distinct from CD166, yet the identity of it is hitherto unknown. We have identified this CD6 ligand as CD318, a cell surface protein previously found to be present on various epithelial cells and many tumor cells. We found that, like CD6 knockout (KO) mice, CD318 KO mice are also protected in experimental autoimmune encephalomyelitis. In humans, we found that CD318 is highly expressed in synovial tissues and participates in CD6-dependent adhesion of T cells to synovial fibroblasts. In addition, soluble CD318 is chemoattractive to T cells and levels of soluble CD318 are selectively and significantly elevated in the synovial fluid from patients with rheumatoid arthritis and juvenile inflammatory arthritis. These results establish CD318 as a ligand of CD6 and a potential target for the diagnosis and treatment of autoimmune diseases such as multiple sclerosis and inflammatory arthritis.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Oxidative Phosphorylation System in Gastric Carcinomas and Gastritis.
Feichtinger RG, Neureiter D, Skaria T, Wessler S, Cover TL, Mayr JA, Zimmermann FA, Posselt G, Sperl W, Kofler B
(2017) Oxid Med Cell Longev 2017: 1320241
MeSH Terms: Electron Transport Complex I, Female, Gastritis, Gene Expression Regulation, Enzymologic, Gene Expression Regulation, Neoplastic, Helicobacter Infections, Helicobacter pylori, Humans, Male, Neoplasm Proteins, Oxidative Phosphorylation, Stomach Neoplasms
Show Abstract · Added March 21, 2018
Switching of cellular energy production from oxidative phosphorylation (OXPHOS) by mitochondria to aerobic glycolysis occurs in many types of tumors. However, the significance of this switching for the development of gastric carcinoma and what connection it may have to infection of the gut, a primary cause of gastric cancer, are poorly understood. Therefore, we investigated the expression of OXPHOS complexes in two types of human gastric carcinomas ("intestinal" and "diffuse"), bacterial gastritis with and without metaplasia, and chemically induced gastritis by using immunohistochemistry. Furthermore, we analyzed the effect of HP infection on several key mitochondrial proteins. Complex I expression was significantly reduced in intestinal type (but not diffuse) gastric carcinomas compared to adjacent control tissue, and the reduction was independent of HP infection. Significantly, higher complex I and complex II expression was present in large tumors. Furthermore, higher complex II and complex III protein levels were also obvious in grade 3 versus grade 2. No differences of OXPHOS complexes and markers of mitochondrial biogenesis were found between bacterially caused and chemically induced gastritis. Thus, intestinal gastric carcinomas, but not precancerous stages, are frequently characterized by loss of complex I, and this pathophysiology occurs independently of HP infection.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Identification of Proteomic Features To Distinguish Benign Pulmonary Nodules from Lung Adenocarcinoma.
Codreanu SG, Hoeksema MD, Slebos RJC, Zimmerman LJ, Rahman SMJ, Li M, Chen SC, Chen H, Eisenberg R, Liebler DC, Massion PP
(2017) J Proteome Res 16: 3266-3276
MeSH Terms: 5-Lipoxygenase-Activating Proteins, Adenocarcinoma, Adenocarcinoma of Lung, Adult, Aged, Antigens, CD, Arachidonate 5-Lipoxygenase, Biomarkers, Tumor, CD11 Antigens, Cell Adhesion Molecules, Diagnosis, Differential, Female, GPI-Linked Proteins, Gene Expression Regulation, Neoplastic, Glucose Transporter Type 3, Humans, Integrin alpha Chains, Lung Neoplasms, Male, Middle Aged, Neoplasm Proteins, Proteomics, Respiratory Mucosa, Solitary Pulmonary Nodule, Tandem Mass Spectrometry, Tissue Array Analysis, Transcriptome
Show Abstract · Added January 29, 2018
We hypothesized that distinct protein expression features of benign and malignant pulmonary nodules may reveal novel candidate biomarkers for the early detection of lung cancer. We performed proteome profiling by liquid chromatography-tandem mass spectrometry to characterize 34 resected benign lung nodules, 24 untreated lung adenocarcinomas (ADCs), and biopsies of bronchial epithelium. Group comparisons identified 65 proteins that differentiate nodules from ADCs and normal bronchial epithelium and 66 proteins that differentiate ADCs from nodules and normal bronchial epithelium. We developed a multiplexed parallel reaction monitoring (PRM) assay to quantify a subset of 43 of these candidate biomarkers in an independent cohort of 20 benign nodules, 21 ADCs, and 20 normal bronchial biopsies. PRM analyses confirmed significant nodule-specific abundance of 10 proteins including ALOX5, ALOX5AP, CCL19, CILP1, COL5A2, ITGB2, ITGAX, PTPRE, S100A12, and SLC2A3 and significant ADC-specific abundance of CEACAM6, CRABP2, LAD1, PLOD2, and TMEM110-MUSTN1. Immunohistochemistry analyses for seven selected proteins performed on an independent set of tissue microarrays confirmed nodule-specific expression of ALOX5, ALOX5AP, ITGAX, and SLC2A3 and cancer-specific expression of CEACAM6. These studies illustrate the value of global and targeted proteomics in a systematic process to identify and qualify candidate biomarkers for noninvasive molecular diagnosis of lung cancer.
0 Communities
1 Members
0 Resources
27 MeSH Terms
Colorectal Cancer Cell Line Proteomes Are Representative of Primary Tumors and Predict Drug Sensitivity.
Wang J, Mouradov D, Wang X, Jorissen RN, Chambers MC, Zimmerman LJ, Vasaikar S, Love CG, Li S, Lowes K, Leuchowius KJ, Jousset H, Weinstock J, Yau C, Mariadason J, Shi Z, Ban Y, Chen X, Coffey RJC, Slebos RJC, Burgess AW, Liebler DC, Zhang B, Sieber OM
(2017) Gastroenterology 153: 1082-1095
MeSH Terms: Antineoplastic Agents, Biomarkers, Tumor, Cell Line, Tumor, Chromatography, Liquid, Colorectal Neoplasms, Databases, Protein, Dose-Response Relationship, Drug, Drug Screening Assays, Antitumor, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Humans, Mutation, Neoplasm Proteins, Patient Selection, Polymorphism, Single Nucleotide, Precision Medicine, Proteome, Proteomics, Signal Transduction, Stromal Cells, Tandem Mass Spectrometry, Transcriptome, Tumor Microenvironment
Show Abstract · Added July 17, 2017
BACKGROUND AND AIMS - Proteomics holds promise for individualizing cancer treatment. We analyzed to what extent the proteomic landscape of human colorectal cancer (CRC) is maintained in established CRC cell lines and the utility of proteomics for predicting therapeutic responses.
METHODS - Proteomic and transcriptomic analyses were performed on 44 CRC cell lines, compared against primary CRCs (n=95) and normal tissues (n=60), and integrated with genomic and drug sensitivity data.
RESULTS - Cell lines mirrored the proteomic aberrations of primary tumors, in particular for intrinsic programs. Tumor relationships of protein expression with DNA copy number aberrations and signatures of post-transcriptional regulation were recapitulated in cell lines. The 5 proteomic subtypes previously identified in tumors were represented among cell lines. Nonetheless, systematic differences between cell line and tumor proteomes were apparent, attributable to stroma, extrinsic signaling, and growth conditions. Contribution of tumor stroma obscured signatures of DNA mismatch repair identified in cell lines with a hypermutation phenotype. Global proteomic data showed improved utility for predicting both known drug-target relationships and overall drug sensitivity as compared with genomic or transcriptomic measurements. Inhibition of targetable proteins associated with drug responses further identified corresponding synergistic or antagonistic drug combinations. Our data provide evidence for CRC proteomic subtype-specific drug responses.
CONCLUSIONS - Proteomes of established CRC cell line are representative of primary tumors. Proteomic data tend to exhibit improved prediction of drug sensitivity as compared with genomic and transcriptomic profiles. Our integrative proteogenomic analysis highlights the potential of proteome profiling to inform personalized cancer medicine.
Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Clinical and Genome-Wide Analysis of Cisplatin-Induced Peripheral Neuropathy in Survivors of Adult-Onset Cancer.
Dolan ME, El Charif O, Wheeler HE, Gamazon ER, Ardeshir-Rouhani-Fard S, Monahan P, Feldman DR, Hamilton RJ, Vaughn DJ, Beard CJ, Fung C, Kim J, Fossa SD, Hertz DL, Mushiroda T, Kubo M, Einhorn LH, Cox NJ, Travis LB, Platinum Study Group
(2017) Clin Cancer Res 23: 5757-5768
MeSH Terms: Adolescent, Adult, Age Factors, Age of Onset, Aged, Cancer Survivors, Cell Cycle Proteins, Cisplatin, Gene Expression Regulation, Neoplastic, Genome-Wide Association Study, Genotype, Humans, Hypertension, Male, Middle Aged, Neoplasm Proteins, Peripheral Nervous System Diseases, Polymorphism, Single Nucleotide, Risk Factors, Testicular Neoplasms
Show Abstract · Added October 27, 2017
Our purpose was to characterize the clinical influences, genetic risk factors, and gene mechanisms contributing to persistent cisplatin-induced peripheral neuropathy (CisIPN) in testicular cancer survivors (TCSs). TCS given cisplatin-based therapy completed the validated EORTC QLQ-CIPN20 questionnaire. An ordinal CisIPN phenotype was derived, and associations with age, smoking, excess drinking, hypertension, body mass index, diabetes, hypercholesterolemia, cumulative cisplatin dose, and self-reported health were examined for 680 TCS. Genotyping was performed on the Illumina HumanOmniExpressExome chip. Following quality control and imputation, 5.1 million SNPs in 680 genetically European TCS formed the input set. GWAS and PrediXcan were used to identify genetic variation and genetically determined gene expression traits, respectively, contributing to CisIPN. We evaluated two independent datasets for replication: Vanderbilt's electronic health database (BioVU) and the CALGB 90401 trial. Eight sensory items formed a subscale with good internal consistency (Cronbach α = 0.88). Variables significantly associated with CisIPN included age at diagnosis (OR per year, 1.06; = 2 × 10), smoking (OR, 1.54; = 0.004), excess drinking (OR, 1.83; = 0.007), and hypertension (OR, 1.61; = 0.03). CisIPN was correlated with lower self-reported health (OR, 0.56; = 2.6 × 10) and weight gain adjusted for years since treatment (OR per Δkg/m, 1.05; = 0.004). PrediXcan identified lower expressions of and and higher expression as associated with CisIPN ( value for each < 5 × 10) with replication of meeting significance criteria (Fisher combined = 0.0089). CisIPN is associated with age, modifiable risk factors, and genetically determined expression level of Further study of implicated genes could elucidate the pathophysiologic underpinnings of CisIPN. .
©2017 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
20 MeSH Terms