Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 282

Publication Record

Connections

The importance of developing therapies targeting the biological spectrum of metastatic disease.
Zijlstra A, Von Lersner A, Yu D, Borrello L, Oudin M, Kang Y, Sahai E, Fingleton B, Stein U, Cox TR, Price JT, Kato Y, Welm AL, Aguirre-Ghiso JA, Board Members of the Metastasis Research Society
(2019) Clin Exp Metastasis 36: 305-309
MeSH Terms: Animals, Drug Development, Humans, Neoplasm Metastasis
Show Abstract · Added March 24, 2020
Great progress has been made in cancer therapeutics. However, metastasis remains the predominant cause of death from cancer. Importantly, metastasis can manifest many years after initial treatment of the primary cancer. This is because cancer cells can remain dormant before forming symptomatic metastasis. An important question is whether metastasis research should focus on the early treatment of metastases, before they are clinically evident ("overt"), or on developing treatments to stop overt metastasis (stage IV cancer). In this commentary we want to clarify why it is important that all avenues of treatment for stage IV patients are developed. Indeed, future treatments are expected to go beyond the mere shrinkage of overt metastases and will include strategies that prevent disseminated tumor cells from emerging from dormancy.
0 Communities
1 Members
0 Resources
MeSH Terms
Non-canonical roles for metabolic enzymes and intermediates in malignant progression and metastasis.
Williams D, Fingleton B
(2019) Clin Exp Metastasis 36: 211-224
MeSH Terms: ATP Citrate (pro-S)-Lyase, Disease Progression, Energy Metabolism, Fatty Acids, Glucose, Glucose-6-Phosphate Isomerase, Glutaminase, Glutamine, Humans, Isocitrate Dehydrogenase, Neoplasm Metastasis, Neoplasms
Show Abstract · Added March 24, 2020
Metabolic alterations are established as a hallmark of cancer. Such hallmark changes in cancer metabolism are characterized by reprogramming of energy-producing pathways and increases in the generation of biosynthetic intermediates to meet the needs of rapidly proliferating tumor cells. Various metabolic phenotypes such as aerobic glycolysis, increased glutamine consumption, and lipolysis have also been associated with the process of metastasis. However, in addition to the energy and biosynthetic alterations, a number of secondary functions of enzymes and metabolites are emerging that specifically contribute to metastasis. Here, we describe atypical intracellular roles of metabolic enzymes, extracellular functions of metabolic enzymes, roles of metabolites as signaling molecules, and epigenetic regulation mediated by altered metabolism, all of which can affect metastatic progression. We highlight how some of these mechanisms are already being exploited for therapeutic purposes, and discuss how others show similar potential.
0 Communities
1 Members
0 Resources
MeSH Terms
Chemokines Modulate Immune Surveillance in Tumorigenesis, Metastasis, and Response to Immunotherapy.
Vilgelm AE, Richmond A
(2019) Front Immunol 10: 333
MeSH Terms: Animals, Antineoplastic Agents, Immunological, Biomarkers, Carcinogenesis, Chemokines, Disease Progression, Humans, Immunologic Surveillance, Immunomodulation, Immunotherapy, Molecular Targeted Therapy, Neoplasm Metastasis, Neoplasm Staging, Neoplasms, Prognosis, Receptors, Chemokine, Treatment Outcome
Show Abstract · Added March 26, 2019
Chemokines are small secreted proteins that orchestrate migration and positioning of immune cells within the tissues. Chemokines are essential for the function of the immune system. Accumulating evidence suggest that chemokines play important roles in tumor microenvironment. In this review we discuss an association of chemokine expression and activity within the tumor microenvironment with cancer outcome. We summarize regulation of immune cell recruitment into the tumor by chemokine-chemokine receptor interactions and describe evidence implicating chemokines in promotion of the "inflamed" immune-cell enriched tumor microenvironment. We review both tumor-promoting function of chemokines, such as regulation of tumor metastasis, and beneficial chemokine roles, including stimulation of anti-tumor immunity and response to immunotherapy. Finally, we discuss the therapeutic strategies target tumor-promoting chemokines or induce/deliver beneficial chemokines within the tumor focusing on pre-clinical studies and clinical trials going forward. The goal of this review is to provide insight into comprehensive role of chemokines and their receptors in tumor pathobiology and treatment.
0 Communities
2 Members
0 Resources
17 MeSH Terms
Serine Threonine Kinase 17A Maintains the Epithelial State in Colorectal Cancer Cells.
Short SP, Thompson JJ, Bilotta AJ, Chen X, Revetta FL, Washington MK, Williams CS
(2019) Mol Cancer Res 17: 882-894
MeSH Terms: Apoptosis Regulatory Proteins, Cell Line, Tumor, Cell Movement, Colorectal Neoplasms, Epithelial Cells, Epithelial-Mesenchymal Transition, Fluorouracil, HCT116 Cells, Humans, Neoplasm Metastasis, Protein-Serine-Threonine Kinases
Show Abstract · Added April 15, 2019
Serine threonine kinase 17A (STK17A) is a ubiquitously expressed kinase originally identified as a regulator of apoptosis; however, whether it functionally contributes to colorectal cancer has not been established. Here, we have analyzed STK17A in colorectal cancer and demonstrated decreased expression of STK17A in primary tumors, which is further reduced in metastatic lesions, indicating a potential role in regulating the metastatic cascade. Interestingly, changes in STK17A expression did not modify proliferation, apoptosis, or sensitivity of colorectal cancer cell lines to treatment with the chemotherapeutic 5-fluorouracil. Instead, knockdown induced a robust mesenchymal phenotype consistent with the epithelial-mesenchymal transition, including spindle-like cell morphology, decreased expression of adherens junction proteins, and increased migration and invasion. Additionally, overexpression of decreased cell size and induced widespread membrane blebbing, a phenotype often associated with activation of cell contractility. Indeed, STK17A-overexpressing cells displayed heightened phosphorylation of myosin light chain in a manner dependent on STK17A catalytic activity. Finally, patient-derived tumor organoid cultures were used to more accurately determine STK17A's effect in primary human tumor cells. Loss of STK17A induced morphologic changes, decreased E-cadherin, increased invasion, and augmented organoid attachment on 2D substrates, all together suggesting a more metastatic phenotype. Collectively, these data indicate a novel role for STK17A in the regulation of epithelial phenotypes and indicate its functional contribution to colorectal cancer invasion and metastasis. IMPLICATIONS: Loss of serine threonine kinase 17A occurs in colorectal cancer metastasis, induces mesenchymal morphologies, and contributes to tumor cell invasion and migration in colorectal cancer.
©2019 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Platelet-Based Drug Delivery for Cancer Applications.
Ortiz-Otero N, Mohamed Z, King MR
(2018) Adv Exp Med Biol 1092: 235-251
MeSH Terms: Blood Platelets, Drug Delivery Systems, Hemostasis, Humans, Male, Neoplasm Metastasis, Neoplasms
Show Abstract · Added April 15, 2019
Platelets can be considered as the "guardian of hemostasis" where their main function is to maintain vascular integrity. In pathological conditions, the hemostatic role of platelets may be hijacked to stimulate disease progression. In 1865, Armand Trousseau was a pioneer in establishing the platelet-cancer metastasis relationship, which he eventually termed as Trousseau's Syndrome to describe the deregulation of the hemostasis-associated pathways induced by cancer progression (Varki, Blood. 110(6):1723-9, 2007). Since these early studies, there has been an increase in experimental evidence not only to elucidate the role of platelets in cancer metastasis but also to create novel cancer therapies by targeting the platelet's impact in metastasis. In this chapter, we discuss the contribution of platelets in facilitating tumor cell transit from the primary tumor to distant metastatic sites as well as novel cancer therapies based on platelet interactions.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Therapeutically Active RIG-I Agonist Induces Immunogenic Tumor Cell Killing in Breast Cancers.
Elion DL, Jacobson ME, Hicks DJ, Rahman B, Sanchez V, Gonzales-Ericsson PI, Fedorova O, Pyle AM, Wilson JT, Cook RS
(2018) Cancer Res 78: 6183-6195
MeSH Terms: Animals, Apoptosis, Breast Neoplasms, Cell Line, Tumor, Cytokines, DEAD Box Protein 58, Female, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Humans, Immunity, Innate, Immunotherapy, Lymphocytes, Tumor-Infiltrating, MCF-7 Cells, Mice, Mice, Inbred BALB C, Mice, Nude, Nanoparticles, Neoplasm Metastasis, Neoplasms, Pyroptosis, Signal Transduction, Tumor Microenvironment
Show Abstract · Added April 15, 2019
Cancer immunotherapies that remove checkpoint restraints on adaptive immunity are gaining clinical momentum but have not achieved widespread success in breast cancers, a tumor type considered poorly immunogenic and which harbors a decreased presence of tumor-infiltrating lymphocytes. Approaches that activate innate immunity in breast cancer cells and the tumor microenvironment are of increasing interest, based on their ability to induce immunogenic tumor cell death, type I IFNs, and lymphocyte-recruiting chemokines. In agreement with reports in other cancers, we observe loss, downregulation, or mutation of the innate viral nucleotide sensor retinoic acid-inducible gene I (RIG-I/) in only 1% of clinical breast cancers, suggesting potentially widespread applicability for therapeutic RIG-I agonists that activate innate immunity. This was tested using an engineered RIG-I agonist in a breast cancer cell panel representing each of three major clinical breast cancer subtypes. Treatment with RIG-I agonist resulted in upregulation and mitochondrial localization of RIG-I and activation of proinflammatory transcription factors STAT1 and NF-κB. RIG-I agonist triggered the extrinsic apoptosis pathway and pyroptosis, a highly immunogenic form of cell death in breast cancer cells. RIG-I agonist also induced expression of lymphocyte-recruiting chemokines and type I IFN, confirming that cell death and cytokine modulation occur in a tumor cell-intrinsic manner. Importantly, RIG-I activation in breast tumors increased tumor lymphocytes and decreased tumor growth and metastasis. Overall, these findings demonstrate successful therapeutic delivery of a synthetic RIG-I agonist to induce tumor cell killing and to modulate the tumor microenvironment These findings describe the first in vivo delivery of RIG-I mimetics to tumors, demonstrating a potent immunogenic and therapeutic effect in the context of otherwise poorly immunogenic breast cancers. .
©2018 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Emerin Deregulation Links Nuclear Shape Instability to Metastatic Potential.
Reis-Sobreiro M, Chen JF, Novitskaya T, You S, Morley S, Steadman K, Gill NK, Eskaros A, Rotinen M, Chu CY, Chung LWK, Tanaka H, Yang W, Knudsen BS, Tseng HR, Rowat AC, Posadas EM, Zijlstra A, Di Vizio D, Freeman MR
(2018) Cancer Res 78: 6086-6097
MeSH Terms: Animals, Apoptosis, Biomarkers, Tumor, Cell Line, Tumor, Cell Movement, Cell Nucleus, Disease Progression, Gene Expression Regulation, Neoplastic, Humans, Male, Membrane Proteins, Mice, Mice, SCID, Neoplasm Invasiveness, Neoplasm Metastasis, Neoplastic Cells, Circulating, Nuclear Envelope, Nuclear Proteins, Prostatic Neoplasms
Show Abstract · Added April 10, 2019
Abnormalities in nuclear shape are a well-known feature of cancer, but their contribution to malignant progression remains poorly understood. Here, we show that depletion of the cytoskeletal regulator, Diaphanous-related formin 3 (DIAPH3), or the nuclear membrane-associated proteins, lamin A/C, in prostate and breast cancer cells, induces nuclear shape instability, with a corresponding gain in malignant properties, including secretion of extracellular vesicles that contain genomic material. This transformation is characterized by a reduction and/or mislocalization of the inner nuclear membrane protein, emerin. Consistent with this, depletion of emerin evokes nuclear shape instability and promotes metastasis. By visualizing emerin localization, evidence for nuclear shape instability was observed in cultured tumor cells, in experimental models of prostate cancer, in human prostate cancer tissues, and in circulating tumor cells from patients with metastatic disease. Quantitation of emerin mislocalization discriminated cancer from benign tissue and correlated with disease progression in a prostate cancer cohort. Taken together, these results identify emerin as a mediator of nuclear shape stability in cancer and show that destabilization of emerin can promote metastasis. This study identifies a novel mechanism integrating the control of nuclear structure with the metastatic phenotype, and our inclusion of two types of human specimens (cancer tissues and circulating tumor cells) demonstrates direct relevance to human cancer. http://cancerres.aacrjournals.org/content/canres/78/21/6086/F1.large.jpg .
©2018 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Quantitative in vivo whole genome motility screen reveals novel therapeutic targets to block cancer metastasis.
Stoletov K, Willetts L, Paproski RJ, Bond DJ, Raha S, Jovel J, Adam B, Robertson AE, Wong F, Woolner E, Sosnowski DL, Bismar TA, Wong GK, Zijlstra A, Lewis JD
(2018) Nat Commun 9: 2343
MeSH Terms: Animals, Cell Line, Tumor, Cell Movement, Chick Embryo, Collagen, Female, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Humans, Male, Mice, Mice, Nude, Mice, SCID, Neoplasm Invasiveness, Neoplasm Metastasis, Neoplasm Transplantation, Phenotype, Prostatic Neoplasms, RNA Interference, RNA, Small Interfering
Show Abstract · Added April 10, 2019
Metastasis is the most lethal aspect of cancer, yet current therapeutic strategies do not target its key rate-limiting steps. We have previously shown that the entry of cancer cells into the blood stream, or intravasation, is highly dependent upon in vivo cancer cell motility, making it an attractive therapeutic target. To systemically identify genes required for tumor cell motility in an in vivo tumor microenvironment, we established a novel quantitative in vivo screening platform based on intravital imaging of human cancer metastasis in ex ovo avian embryos. Utilizing this platform to screen a genome-wide shRNA library, we identified a panel of novel genes whose function is required for productive cancer cell motility in vivo, and whose expression is closely associated with metastatic risk in human cancers. The RNAi-mediated inhibition of these gene targets resulted in a nearly total (>99.5%) block of spontaneous cancer metastasis in vivo.
0 Communities
1 Members
0 Resources
MeSH Terms
Pentose conversions support the tumorigenesis of pancreatic cancer distant metastases.
Bechard ME, Word AE, Tran AV, Liu X, Locasale JW, McDonald OG
(2018) Oncogene 37: 5248-5256
MeSH Terms: Carcinogenesis, Cell Line, Tumor, Humans, Neoplasm Metastasis, Pancreatic Neoplasms, Pentose Phosphate Pathway
Show Abstract · Added July 20, 2018
Pancreatic ductal adenocarcinoma (PDAC) adopts several unique metabolic strategies to support primary tumor growth. Whether additional metabolic strategies are adopted to support metastatic tumorigenesis is less clear. This could be particularly relevant for distant metastasis, which often follows a rapidly progressive clinical course. Here we report that PDAC distant metastases evolve a unique series of metabolic reactions to maintain activation of the anabolic glucose enzyme phosphogluconate dehydrogenase (PGD). PGD catalytic activity was recurrently elevated across distant metastases, and modulating PGD activity levels dictated tumorigenic capacity. Metabolomics data raised the possibility that distant metastases evolved a core pentose conversion pathway (PCP) that converted glucose-derived metabolites into PGD substrate, thereby hyperactivating the enzyme. Consistent with this, each individual metabolite in the PCP stimulated PGD catalysis in distant metastases, and knockdown of each individual PCP enzyme selectively impaired tumorigenesis. We propose that the PCP manufactures PGD substrate outside of the rate-limiting oxidative pentose phosphate pathway (oxPPP). This enables PGD-dependent tumorigenesis by providing adequate substrate to fuel high catalytic activity, and raises the possibility that PDAC distant metastases adopt their own unique metabolic strategies to support tumor growth.
0 Communities
1 Members
0 Resources
6 MeSH Terms
Simple staging system for osteosarcoma performs equivalently to the AJCC and MSTS systems.
Cates JMM
(2018) J Orthop Res 36: 2802-2808
MeSH Terms: Adolescent, Adult, Bone Neoplasms, Bone and Bones, Female, Humans, Male, Neoplasm Metastasis, Neoplasm Staging, Osteosarcoma, Prognosis, Retrospective Studies, SEER Program, United States, Young Adult
Show Abstract · Added November 1, 2018
Both the American Joint Committee on Cancer (AJCC) and Musculoskeletal Tumor Society (MSTS) staging systems for skeletal sarcomas have major weaknesses. A revised staging system for osteosarcoma (the Vanderbilt system) was developed based on exploratory analyses of the relative prognostic impacts of histologic grade, tumor size, local tumor extension, and specific anatomic sites of metastasis using case records from the National Cancer Database (N = 4,285). AJCC, MSTS, and Vanderbilt staging schemes were then compared using a separate, population-based cancer registry (the Surveillance, Epidemiology, and End Results database; N = 2,246) as a validation dataset. Predictive accuracy for 5-year sarcoma-specific survival was evaluated by comparing areas under receiver-operating characteristic curves generated from logistic regression. Three different concordance indices and Bayesian information criteria were also calculated for model comparisons. The Vanderbilt staging system showed comparable predictive accuracy for 5-year disease-specific survival (65%) compared to the AJCC (67%) and MSTS (67%) staging systems. Most cross-comparisons of model concordance were not significantly different either. Bayesian information criterion was lowest for the MSTS staging system. Substaging osteosarcoma by current anatomical criteria is ineffectual. A simplified staging system based only on histologic grade and the presence of distant metastasis to any anatomic site performs similarly to the current AJCC and MSTS staging systems by multiple statistical criteria and is proposed for clinical and pathological staging of osteosarcomas of the non-pelvic appendicular and non-spinal axial skeleton. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2802-2808, 2018.
© 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
15 MeSH Terms