Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 5 of 5

Publication Record

Connections

Nedd4-2 regulates surface expression and may affect N-glycosylation of hyperpolarization-activated cyclic nucleotide-gated (HCN)-1 channels.
Wilkars W, Wollberg J, Mohr E, Han M, Chetkovich DM, Bähring R, Bender RA
(2014) FASEB J 28: 2177-90
MeSH Terms: Amino Acid Motifs, Animals, Brain, Cell Membrane, Down-Regulation, Electrophysiology, Endosomal Sorting Complexes Required for Transport, Female, Gene Expression Regulation, Glycosylation, HEK293 Cells, Humans, Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels, Nedd4 Ubiquitin Protein Ligases, Oocytes, Protein Structure, Tertiary, Rats, Rats, Wistar, Receptors, Cytoplasmic and Nuclear, Ubiquitin-Protein Ligases, Xenopus Proteins, Xenopus laevis
Show Abstract · Added April 2, 2019
HCN channels are important regulators of neuronal excitability. The proper function of these channels is governed by various mechanisms, including post-translational modifications of channel subunits. Here, we provide evidence that ubiquitination via a ubiquitin ligase, neuronal precursor cell expressed developmentally downregulated (Nedd)-4-2, is involved in the regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. We identified a PY motif (L/PPxY), the characteristic binding motif for Nedd4-2 in the C terminus of the HCN1 subunit, and showed that HCN1 and Nedd4-2 interacted both in vivo (rat hippocampus, neocortex, and cerebellum) and in vitro [human embryonic kidney 293 (HEK293) cells], resulting in increased HCN1 ubiquitination. Elimination of the PY motif reduced, but did not abolish, Nedd4-2 binding, which further involved a stretch of ∼100 aa downstream in the HCN1 C terminus. Coexpression of Nedd4-2 and HCN1 drastically reduced the HCN1-mediated h-current amplitude (85-92%) in Xenopus laevis oocytes and reduced surface expression (34%) of HCN1 channels in HEK293 cells, thereby opposing effects of tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b)-(1a-4), an auxiliary subunit that promotes HCN1 surface expression. Regulation may further include N-glycosylation of HCN1 channels, which is significantly enhanced by TRIP8b(1a-4), but may be reduced by Nedd4-2. Taken together, our data indicate that Nedd4-2 plays an important role in the regulation of HCN1 trafficking and may compete with TRIP8b(1a-4) in this process.
0 Communities
1 Members
0 Resources
MeSH Terms
NEDD4L is downregulated in colorectal cancer and inhibits canonical WNT signaling.
Tanksley JP, Chen X, Coffey RJ
(2013) PLoS One 8: e81514
MeSH Terms: Colorectal Neoplasms, Down-Regulation, Endosomal Sorting Complexes Required for Transport, Gene Expression Regulation, Neoplastic, Humans, Nedd4 Ubiquitin Protein Ligases, Tumor Suppressor Proteins, Ubiquitin-Protein Ligases, Wnt Signaling Pathway
Show Abstract · Added March 27, 2014
The NEDD4 family of E3 ubiquitin ligases includes nine members. Each is a modular protein, containing an N-terminal C2 domain for cell localization, two-to-four central WW domains for substrate recognition, and a C-terminal, catalytic HECT domain, which is responsible for catalyzing the ubiquitylation reaction. Members of this family are known to affect pathways central to the pathogenesis of colorectal cancer, including the WNT, TGFβ, EGFR, and p53 pathways. Recently, NEDD4 mRNA was reported to be overexpressed in colorectal cancer, but tumor stage was not considered in the analysis. Expression of the other family members has not been studied in colorectal cancer. Herein, we determined the expression patterns of all nine NEDD4 family members in 256 patients who presented with disease ranging from premalignant adenoma to stage IV colorectal cancer. NEDD4 mRNA was significantly increased in all stages of colorectal cancer. In contrast, NEDD4L mRNA, the closest homolog to NEDD4, was the most highly downregulated family member, and was significantly downregulated in all tumor stages. We also found NEDD4L protein was significantly decreased by western blotting in colorectal cancer samples compared to adjacent normal mucosa. In addition, NEDD4L, but not catalytically inactive NEDD4L, inhibited canonical WNT signaling at or below the level of β-catenin in vitro. These findings suggest that NEDD4L may play a tumor suppressive role in colorectal cancer, possibly through inhibition of canonical WNT signaling.
1 Communities
1 Members
0 Resources
9 MeSH Terms
Anterograde transport of surfactant protein C proprotein to distal processing compartments requires PPDY-mediated association with Nedd4 ubiquitin ligases.
Kotorashvili A, Russo SJ, Mulugeta S, Guttentag S, Beers MF
(2009) J Biol Chem 284: 16667-78
MeSH Terms: Cells, Cultured, Endosomal Sorting Complexes Required for Transport, Epithelial Cells, Green Fluorescent Proteins, Humans, Lung, Mutagenesis, Mutant Chimeric Proteins, Nedd4 Ubiquitin Protein Ligases, Protein Precursors, Protein Transport, Pulmonary Surfactant-Associated Protein C, RNA, Small Interfering, Transfection, Ubiquitin-Protein Ligases, Ubiquitination
Show Abstract · Added January 20, 2015
Biosynthesis of surfactant protein C (SP-C) by alveolar type 2 cells requires proteolytic processing of a 21-kDa propeptide (proSP-C21) in post-Golgi compartments to yield a 3.7-kDa mature form. Scanning alanine mutagenesis, binding assays, and co-immunoprecipitation were used to characterize the proSP-C targeting domain. Delivery of proSP-C21 to distal processing organelles is dependent upon the NH2-terminal cytoplasmic SP-C propeptide, which contains a conserved PPDY motif. In A549 cells, transfection of EGFP/proSP-C21 constructs containing polyalanine substitution for Glu11-Thr18, 13PPDY16, or 14P,16Y produced endoplasmic reticulum retention of the fusion proteins. Protein-protein interactions of proSP-C with known WW domains were screened using a solid-phase array that revealed binding of the proSP-C NH2 terminus to several WW domains found in the Nedd4 family of E3 ligases. Specificity of the interaction was confirmed by co-immunoprecipitation of proSP-C and Nedd4 or Nedd4-2 in epithelial cell lines. By Western blotting and reverse transcription-PCR, both forms were detected in primary human type 2 cells. Knockdown of Nedd4-2 by small interference RNA transfection of cultured human type 2 cells blocked processing of 35S-labeled proSP-C21. Mutagenesis of potential acceptor sites for ubiquitination in the cytosolic domain of proSP-C (Lys6, Lys34, or both) failed to inhibit trafficking of EGFP/proSP-C21. These results indicate that PPDY-mediated interaction with Nedd4 E3-ligases is required for trafficking of proSP-C. We speculate that the Nedd4/proSP-C tandem is part of a larger protein complex containing a ubiquitinated component that further directs its transport.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Nedd4 mediates ErbB4 JM-a/CYT-1 ICD ubiquitination and degradation in MDCK II cells.
Zeng F, Xu J, Harris RC
(2009) FASEB J 23: 1935-45
MeSH Terms: Amino Acid Motifs, Animals, Cells, Cultured, Dogs, Endosomal Sorting Complexes Required for Transport, Enzyme Inhibitors, ErbB Receptors, Humans, Lysosomes, Mutagenesis, Site-Directed, Nedd4 Ubiquitin Protein Ligases, Proteasome Endopeptidase Complex, Proteasome Inhibitors, Protein Isoforms, Protein Structure, Tertiary, Receptor, ErbB-4, Recombinant Fusion Proteins, Tetradecanoylphorbol Acetate, Ubiquitin, Ubiquitin-Protein Ligases, Ubiquitination
Show Abstract · Added August 19, 2013
ErbB4, a type I transmembrane receptor tyrosine kinase, is a member of the epidermal growth factor receptor family. Its cleavage releases an intracellular C-terminal domain (ICD), which can be either degraded following ubiqitination or translocated to the nucleus and regulate gene expression. There are 2 ErbB4 ICD isoforms: CYT-1 and CYT-2. We and others have previously reported that following cleavage, CYT-2 selectively translocates to the nucleus. In the current study we found that following cleavage, the intracellular levels of CYT-1 ICD decreased rapidly, while levels of CYT-2 ICD remained relatively stable. CYT-1 ICD degradation could be prevented by administration of either the proteasome inhibitor lactacystin or the lysosome inhibitor chloroquine, indicating both proteasomal and lysosomal degradation. Further studies implicated Nedd4, an E3 ubiquitin ligase, as a mediator of CYT-1 ubiquitination and degradation. The interaction of Nedd4 with CYT-1 was shown by coimmnunoprecipitation, an in vitro direct binding assay, and an in vitro ubiquitination assay. Three PPxY or PY motifs present in the CYT-1 C terminus are necessary for binding by Nedd4 WW domains, because impaired interactions are seen in mutation of any of the PY motifs. Nedd4-CYT-1 binding was associated with increased CYT-1 ubiquitination following proteasome inhibitor treatment. Impaired Nedd4 binding to CYT-1 by PY motif mutations led to increased CYT-1 ICD stability, whereas only one of the PY motif mutations (Y1056A), which disrupts the binding sites for both a WW domain and an SH2 domain of PI3 kinase, demonstrated enhanced nuclear translocation following HB-EGF treatment. These studies indicate that Nedd4 mediates ErbB4 CYT-1 ICD ubiquitination and degradation, and the prevention of both WW binding and PI3 kinase activity are required for ErbB4 nuclear translocation.
1 Communities
1 Members
0 Resources
21 MeSH Terms
Inhibition of the epithelial Na+ channel by interaction of Nedd4 with a PY motif deleted in Liddle's syndrome.
Goulet CC, Volk KA, Adams CM, Prince LS, Stokes JB, Snyder PM
(1998) J Biol Chem 273: 30012-7
MeSH Terms: Animals, COS Cells, Calcium-Binding Proteins, Cell Membrane, Endosomal Sorting Complexes Required for Transport, Epithelium, Hypertension, Ligases, Nedd4 Ubiquitin Protein Ligases, Protein Binding, Rats, Recombinant Fusion Proteins, Sequence Deletion, Sodium Channel Blockers, Syndrome, Ubiquitin-Protein Ligases, Xenopus, Xenopus Proteins
Show Abstract · Added June 9, 2010
The epithelial Na+ channel (ENaC) plays a critical role in Na+ absorption in the kidney and other epithelia. Mutations in the C terminus of the beta or gammaENaC subunits increase renal Na+ absorption, causing Liddle's syndrome, an inherited form of hypertension. These mutations delete or disrupt a PY motif that was recently shown to interact with Nedd4, a ubiquitin-protein ligase expressed in epithelia. We found that Nedd4 inhibited ENaC when they were coexpressed in Xenopus oocytes. Liddle's syndrome-associated mutations that prevent the interaction between Nedd4 and ENaC abolished inhibition, suggesting that a direct interaction is required for inhibition by Nedd4. Inhibition also required activity of a ubiquitin ligase domain within the C terminus of Nedd4. Nedd4 had no detectable effect on the single channel properties of ENaC. Rather, Nedd4 decreased cell surface expression of both ENaC and a chimeric protein containing the C terminus of the beta subunit. Decreased surface expression resulted from an increase in the rate of degradation of the channel complex. Thus, interaction of Nedd4 with the C terminus of ENaC inhibits Na+ absorption, and loss of this interaction may play a role in the pathogenesis of Liddle's syndrome and other forms of hypertension.
0 Communities
1 Members
0 Resources
18 MeSH Terms