Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 33

Publication Record

Connections

(Na1.5) Variant Functional Perturbation and Clinical Presentation: Variants of a Certain Significance.
Kroncke BM, Glazer AM, Smith DK, Blume JD, Roden DM
(2018) Circ Genom Precis Med 11: e002095
MeSH Terms: Animals, Cell Line, Humans, Models, Genetic, Mutation, NAV1.5 Voltage-Gated Sodium Channel, Penetrance, Probability, Statistics, Nonparametric, Uncertainty
Show Abstract · Added March 26, 2019
BACKGROUND - Accurately predicting the impact of rare nonsynonymous variants on disease risk is an important goal in precision medicine. Variants in the cardiac sodium channel (protein Na1.5; voltage-dependent cardiac Na+ channel) are associated with multiple arrhythmia disorders, including Brugada syndrome and long QT syndrome. Rare variants also occur in ≈1% of unaffected individuals. We hypothesized that in vitro electrophysiological functional parameters explain a statistically significant portion of the variability in disease penetrance.
METHODS - From a comprehensive literature review, we quantified the number of carriers presenting with and without disease for 1712 reported variants. For 356 variants, data were also available for 5 Na1.5 electrophysiological parameters: peak current, late/persistent current, steady-state V1/2 of activation and inactivation, and recovery from inactivation.
RESULTS - We found that peak and late current significantly associate with Brugada syndrome (<0.001; ρ=-0.44; Spearman rank test) and long QT syndrome disease penetrance (<0.001; ρ=0.37). Steady-state V1/2 activation and recovery from inactivation associate significantly with Brugada syndrome and long QT syndrome penetrance, respectively. Continuous estimates of disease penetrance align with the current American College of Medical Genetics classification paradigm.
CONCLUSIONS - Na1.5 in vitro electrophysiological parameters are correlated with Brugada syndrome and long QT syndrome disease risk. Our data emphasize the value of in vitro electrophysiological characterization and incorporating counts of affected and unaffected carriers to aid variant classification. This quantitative analysis of the electrophysiological literature should aid the interpretation of Na1.5 variant electrophysiological abnormalities and help improve Na1.5 variant classification.
© 2018 American Heart Association, Inc.
0 Communities
1 Members
0 Resources
10 MeSH Terms
A Mechanism of Calmodulin Modulation of the Human Cardiac Sodium Channel.
Johnson CN, Potet F, Thompson MK, Kroncke BM, Glazer AM, Voehler MW, Knollmann BC, George AL, Chazin WJ
(2018) Structure 26: 683-694.e3
MeSH Terms: Binding Sites, Calcium, Calmodulin, Crystallography, X-Ray, Gene Expression Regulation, Humans, Kinetics, Models, Molecular, Mutation, NAV1.5 Voltage-Gated Sodium Channel, Protein Binding
Show Abstract · Added March 26, 2019
The function of the human cardiac sodium channel (Na1.5) is modulated by the Ca sensor calmodulin (CaM), but the underlying mechanism(s) are controversial and poorly defined. CaM has been reported to bind in a Ca-dependent manner to two sites in the intracellular loop that is critical for inactivation of Na1.5 (inactivation gate [IG]). The affinity of CaM for the complete IG was significantly stronger than that of fragments that lacked both complete binding sites. Structural analysis by nuclear magnetic resonance, crystallographic, and scattering approaches revealed that CaM simultaneously engages both IG sites using an extended configuration. Patch-clamp recordings for wild-type and mutant channels with an impaired CaM-IG interaction revealed CaM binding to the IG promotes recovery from inactivation while impeding the kinetics of inactivation. Models of full-length Na1.5 suggest that CaM binding to the IG directly modulates channel function by destabilizing the inactivated state, which would promote resetting of the IG after channels close.
Copyright © 2018 Elsevier Ltd. All rights reserved.
0 Communities
2 Members
0 Resources
MeSH Terms
Azithromycin Causes a Novel Proarrhythmic Syndrome.
Yang Z, Prinsen JK, Bersell KR, Shen W, Yermalitskaya L, Sidorova T, Luis PB, Hall L, Zhang W, Du L, Milne G, Tucker P, George AL, Campbell CM, Pickett RA, Shaffer CM, Chopra N, Yang T, Knollmann BC, Roden DM, Murray KT
(2017) Circ Arrhythm Electrophysiol 10:
MeSH Terms: Action Potentials, Animals, Anti-Bacterial Agents, Arrhythmias, Cardiac, Azithromycin, CHO Cells, Calcium Channel Blockers, Calcium Channels, L-Type, Cricetulus, Dose-Response Relationship, Drug, Electrocardiography, Ambulatory, Female, HEK293 Cells, Heart Rate, Humans, KCNQ1 Potassium Channel, Mice, Inbred C57BL, Myocytes, Cardiac, NAV1.5 Voltage-Gated Sodium Channel, Potassium Channel Blockers, Potassium Channels, Inwardly Rectifying, Potassium Channels, Voltage-Gated, Rabbits, Sodium Channel Blockers, Telemetry, Time Factors, Transfection, Young Adult
Show Abstract · Added July 6, 2017
BACKGROUND - The widely used macrolide antibiotic azithromycin increases risk of cardiovascular and sudden cardiac death, although the underlying mechanisms are unclear. Case reports, including the one we document here, demonstrate that azithromycin can cause rapid, polymorphic ventricular tachycardia in the absence of QT prolongation, indicating a novel proarrhythmic syndrome. We investigated the electrophysiological effects of azithromycin in vivo and in vitro using mice, cardiomyocytes, and human ion channels heterologously expressed in human embryonic kidney (HEK 293) and Chinese hamster ovary (CHO) cells.
METHODS AND RESULTS - In conscious telemetered mice, acute intraperitoneal and oral administration of azithromycin caused effects consistent with multi-ion channel block, with significant sinus slowing and increased PR, QRS, QT, and QTc intervals, as seen with azithromycin overdose. Similarly, in HL-1 cardiomyocytes, the drug slowed sinus automaticity, reduced phase 0 upstroke slope, and prolonged action potential duration. Acute exposure to azithromycin reduced peak SCN5A currents in HEK cells (IC=110±3 μmol/L) and Na current in mouse ventricular myocytes. However, with chronic (24 hour) exposure, azithromycin caused a ≈2-fold increase in both peak and late SCN5A currents, with findings confirmed for I in cardiomyocytes. Mild block occurred for K currents representing I (CHO cells expressing hERG; IC=219±21 μmol/L) and I (CHO cells expressing KCNQ1+KCNE1; IC=184±12 μmol/L), whereas azithromycin suppressed L-type Ca currents (rabbit ventricular myocytes, IC=66.5±4 μmol/L) and I (HEK cells expressing Kir2.1, IC=44±3 μmol/L).
CONCLUSIONS - Chronic exposure to azithromycin increases cardiac Na current to promote intracellular Na loading, providing a potential mechanistic basis for the novel form of proarrhythmia seen with this macrolide antibiotic.
© 2017 American Heart Association, Inc.
0 Communities
1 Members
0 Resources
28 MeSH Terms
Transcription factor ETV1 is essential for rapid conduction in the heart.
Shekhar A, Lin X, Liu FY, Zhang J, Mo H, Bastarache L, Denny JC, Cox NJ, Delmar M, Roden DM, Fishman GI, Park DS
(2016) J Clin Invest 126: 4444-4459
MeSH Terms: Animals, DNA-Binding Proteins, Heart Atria, Heart Conduction System, Heart Ventricles, Homeobox Protein Nkx-2.5, Humans, Mice, Mice, Transgenic, Myocardium, Myocytes, Cardiac, NAV1.5 Voltage-Gated Sodium Channel, Transcription Factors
Show Abstract · Added March 14, 2018
Rapid impulse propagation in the heart is a defining property of pectinated atrial myocardium (PAM) and the ventricular conduction system (VCS) and is essential for maintaining normal cardiac rhythm and optimal cardiac output. Conduction defects in these tissues produce a disproportionate burden of arrhythmic disease and are major predictors of mortality in heart failure patients. Despite the clinical importance, little is known about the gene regulatory network that dictates the fast conduction phenotype. Here, we have used signal transduction and transcriptional profiling screens to identify a genetic pathway that converges on the NRG1-responsive transcription factor ETV1 as a critical regulator of fast conduction physiology for PAM and VCS cardiomyocytes. Etv1 was highly expressed in murine PAM and VCS cardiomyocytes, where it regulates expression of Nkx2-5, Gja5, and Scn5a, key cardiac genes required for rapid conduction. Mice deficient in Etv1 exhibited marked cardiac conduction defects coupled with developmental abnormalities of the VCS. Loss of Etv1 resulted in a complete disruption of the normal sodium current heterogeneity that exists between atrial, VCS, and ventricular myocytes. Lastly, a phenome-wide association study identified a link between ETV1 and bundle branch block and heart block in humans. Together, these results identify ETV1 as a critical factor in determining fast conduction physiology in the heart.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Long QT Syndrome and Potentially Pathogenic Genetic Variants--In Reply.
Van Driest SL, Wells QS, Roden DM
(2016) JAMA 315: 2467-8
MeSH Terms: Arrhythmias, Cardiac, Electronic Health Records, Ether-A-Go-Go Potassium Channels, Female, Genetic Variation, Humans, Laboratories, Male, NAV1.5 Voltage-Gated Sodium Channel, Phenotype
Added April 6, 2017
0 Communities
1 Members
0 Resources
10 MeSH Terms
Association of Arrhythmia-Related Genetic Variants With Phenotypes Documented in Electronic Medical Records.
Van Driest SL, Wells QS, Stallings S, Bush WS, Gordon A, Nickerson DA, Kim JH, Crosslin DR, Jarvik GP, Carrell DS, Ralston JD, Larson EB, Bielinski SJ, Olson JE, Ye Z, Kullo IJ, Abul-Husn NS, Scott SA, Bottinger E, Almoguera B, Connolly J, Chiavacci R, Hakonarson H, Rasmussen-Torvik LJ, Pan V, Persell SD, Smith M, Chisholm RL, Kitchner TE, He MM, Brilliant MH, Wallace JR, Doheny KF, Shoemaker MB, Li R, Manolio TA, Callis TE, Macaya D, Williams MS, Carey D, Kapplinger JD, Ackerman MJ, Ritchie MD, Denny JC, Roden DM
(2016) JAMA 315: 47-57
MeSH Terms: Aged, Aged, 80 and over, Alleles, Arrhythmias, Cardiac, Brugada Syndrome, ERG1 Potassium Channel, Electronic Health Records, Ether-A-Go-Go Potassium Channels, Female, Genetic Predisposition to Disease, Genetic Testing, Genetic Variation, Genomics, Heterozygote, Humans, Incidental Findings, Laboratories, Male, Middle Aged, Mutation, Missense, NAV1.5 Voltage-Gated Sodium Channel, Phenotype, Prospective Studies, Random Allocation, Statistics, Nonparametric, Young Adult
Show Abstract · Added April 6, 2017
IMPORTANCE - Large-scale DNA sequencing identifies incidental rare variants in established Mendelian disease genes, but the frequency of related clinical phenotypes in unselected patient populations is not well established. Phenotype data from electronic medical records (EMRs) may provide a resource to assess the clinical relevance of rare variants.
OBJECTIVE - To determine the clinical phenotypes from EMRs for individuals with variants designated as pathogenic by expert review in arrhythmia susceptibility genes.
DESIGN, SETTING, AND PARTICIPANTS - This prospective cohort study included 2022 individuals recruited for nonantiarrhythmic drug exposure phenotypes from October 5, 2012, to September 30, 2013, for the Electronic Medical Records and Genomics Network Pharmacogenomics project from 7 US academic medical centers. Variants in SCN5A and KCNH2, disease genes for long QT and Brugada syndromes, were assessed for potential pathogenicity by 3 laboratories with ion channel expertise and by comparison with the ClinVar database. Relevant phenotypes were determined from EMRs, with data available from 2002 (or earlier for some sites) through September 10, 2014.
EXPOSURES - One or more variants designated as pathogenic in SCN5A or KCNH2.
MAIN OUTCOMES AND MEASURES - Arrhythmia or electrocardiographic (ECG) phenotypes defined by International Classification of Diseases, Ninth Revision (ICD-9) codes, ECG data, and manual EMR review.
RESULTS - Among 2022 study participants (median age, 61 years [interquartile range, 56-65 years]; 1118 [55%] female; 1491 [74%] white), a total of 122 rare (minor allele frequency <0.5%) nonsynonymous and splice-site variants in 2 arrhythmia susceptibility genes were identified in 223 individuals (11% of the study cohort). Forty-two variants in 63 participants were designated potentially pathogenic by at least 1 laboratory or ClinVar, with low concordance across laboratories (Cohen κ = 0.26). An ICD-9 code for arrhythmia was found in 11 of 63 (17%) variant carriers vs 264 of 1959 (13%) of those without variants (difference, +4%; 95% CI, -5% to +13%; P = .35). In the 1270 (63%) with ECGs, corrected QT intervals were not different in variant carriers vs those without (median, 429 vs 439 milliseconds; difference, -10 milliseconds; 95% CI, -16 to +3 milliseconds; P = .17). After manual review, 22 of 63 participants (35%) with designated variants had any ECG or arrhythmia phenotype, and only 2 had corrected QT interval longer than 500 milliseconds.
CONCLUSIONS AND RELEVANCE - Among laboratories experienced in genetic testing for cardiac arrhythmia disorders, there was low concordance in designating SCN5A and KCNH2 variants as pathogenic. In an unselected population, the putatively pathogenic genetic variants were not associated with an abnormal phenotype. These findings raise questions about the implications of notifying patients of incidental genetic findings.
0 Communities
3 Members
0 Resources
26 MeSH Terms
Screening for acute IKr block is insufficient to detect torsades de pointes liability: role of late sodium current.
Yang T, Chun YW, Stroud DM, Mosley JD, Knollmann BC, Hong C, Roden DM
(2014) Circulation 130: 224-34
MeSH Terms: 4-Aminopyridine, Action Potentials, Animals, CHO Cells, Cells, Cultured, Cricetinae, Cricetulus, Drug Evaluation, Preclinical, Female, HEK293 Cells, Humans, Mice, Mice, Inbred C57BL, Models, Animal, Myocytes, Cardiac, NAV1.5 Voltage-Gated Sodium Channel, Patch-Clamp Techniques, Phenethylamines, Phosphatidylinositol 3-Kinases, Potassium Channel Blockers, Proto-Oncogene Proteins c-akt, Risk Factors, Signal Transduction, Sulfonamides, Torsades de Pointes, Transfection
Show Abstract · Added June 5, 2014
BACKGROUND - New drugs are routinely screened for IKr blocking properties thought to predict QT prolonging and arrhythmogenic liability. However, recent data suggest that chronic (hours) drug exposure to phosphoinositide 3-kinase inhibitors used in cancer can prolong QT by inhibiting potassium currents and increasing late sodium current (INa-L) in cardiomyocytes. We tested the extent to which IKr blockers with known QT liability generate arrhythmias through this pathway.
METHODS AND RESULTS - Acute exposure to dofetilide, an IKr blocker without other recognized electropharmacologic actions, produced no change in ion currents or action potentials in adult mouse cardiomyocytes, which lack IKr. By contrast, 2 to 48 hours of exposure to the drug generated arrhythmogenic afterdepolarizations and ≥15-fold increases in INa-L. Including phosphatidylinositol 3,4,5-trisphosphate, a downstream effector for the phosphoinositide 3-kinase pathway, in the pipette inhibited these effects. INa-L was also increased, and inhibitable by phosphatidylinositol 3,4,5-trisphosphate, with hours of dofetilide exposure in human-induced pluripotent stem cell-derived cardiomyocytes and in Chinese hamster ovary cells transfected with SCN5A, encoding sodium current. Cardiomyocytes from dofetilide-treated mice similarly demonstrated increased INa-L and afterdepolarizations. Other agents with variable IKr-blocking potencies and arrhythmia liability produced a range of effects on INa-L, from marked increases (E-4031, d-sotalol, thioridazine, and erythromycin) to little or no effect (haloperidol, moxifloxacin, and verapamil).
CONCLUSIONS - Some but not all drugs designated as arrhythmogenic IKr blockers can generate arrhythmias by augmenting INa-L through the phosphoinositide 3-kinase pathway. These data identify a potential mechanism for individual susceptibility to proarrhythmia and highlight the need for a new paradigm to screen drugs for QT prolonging and arrhythmogenic liability.
© 2014 American Heart Association, Inc.
0 Communities
2 Members
0 Resources
26 MeSH Terms
Inhibition of the late sodium current slows t-tubule disruption during the progression of hypertensive heart disease in the rat.
Aistrup GL, Gupta DK, Kelly JE, O'Toole MJ, Nahhas A, Chirayil N, Misener S, Beussink L, Singh N, Ng J, Reddy M, Mongkolrattanothai T, El-Bizri N, Rajamani S, Shryock JC, Belardinelli L, Shah SJ, Wasserstrom JA
(2013) Am J Physiol Heart Circ Physiol 305: H1068-79
MeSH Terms: Acetanilides, Animals, Calcium Channels, L-Type, Calcium Signaling, Disease Models, Animal, Disease Progression, Dose-Response Relationship, Drug, Heart Failure, Hypertension, Hypertrophy, Left Ventricular, Male, Myocytes, Cardiac, NAV1.5 Voltage-Gated Sodium Channel, Piperazines, Ranolazine, Rats, Rats, Inbred SHR, Ryanodine Receptor Calcium Release Channel, Sarcoplasmic Reticulum Calcium-Transporting ATPases, Sodium, Sodium Channel Blockers, Sodium Channels, Sodium-Calcium Exchanger, Time Factors, Ultrasonography
Show Abstract · Added February 28, 2014
The treatment of heart failure (HF) is challenging and morbidity and mortality are high. The goal of this study was to determine if inhibition of the late Na(+) current with ranolazine during early hypertensive heart disease might slow or stop disease progression. Spontaneously hypertensive rats (aged 7 mo) were subjected to echocardiographic study and then fed either control chow (CON) or chow containing 0.5% ranolazine (RAN) for 3 mo. Animals were then restudied, and each heart was removed for measurements of t-tubule organization and Ca(2+) transients using confocal microscopy of the intact heart. RAN halted left ventricular hypertrophy as determined from both echocardiographic and cell dimension (length but not width) measurements. RAN reduced the number of myocytes with t-tubule disruption and the proportion of myocytes with defects in intracellular Ca(2+) cycling. RAN also prevented the slowing of the rate of restitution of Ca(2+) release and the increased vulnerability to rate-induced Ca(2+) alternans. Differences between CON- and RAN-treated animals were not a result of different expression levels of voltage-dependent Ca(2+) channel 1.2, sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a, ryanodine receptor type 2, Na(+)/Ca(2+) exchanger-1, or voltage-gated Na(+) channel 1.5. Furthermore, myocytes with defective Ca(2+) transients in CON rats showed improved Ca(2+) cycling immediately upon acute exposure to RAN. Increased late Na(+) current likely plays a role in the progression of cardiac hypertrophy, a key pathological step in the development of HF. Early, chronic inhibition of this current slows both hypertrophy and development of ultrastructural and physiological defects associated with the progression to HF.
0 Communities
1 Members
0 Resources
25 MeSH Terms
Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death.
Bezzina CR, Barc J, Mizusawa Y, Remme CA, Gourraud JB, Simonet F, Verkerk AO, Schwartz PJ, Crotti L, Dagradi F, Guicheney P, Fressart V, Leenhardt A, Antzelevitch C, Bartkowiak S, Borggrefe M, Schimpf R, Schulze-Bahr E, Zumhagen S, Behr ER, Bastiaenen R, Tfelt-Hansen J, Olesen MS, Kääb S, Beckmann BM, Weeke P, Watanabe H, Endo N, Minamino T, Horie M, Ohno S, Hasegawa K, Makita N, Nogami A, Shimizu W, Aiba T, Froguel P, Balkau B, Lantieri O, Torchio M, Wiese C, Weber D, Wolswinkel R, Coronel R, Boukens BJ, Bézieau S, Charpentier E, Chatel S, Despres A, Gros F, Kyndt F, Lecointe S, Lindenbaum P, Portero V, Violleau J, Gessler M, Tan HL, Roden DM, Christoffels VM, Le Marec H, Wilde AA, Probst V, Schott JJ, Dina C, Redon R
(2013) Nat Genet 45: 1044-9
MeSH Terms: Alleles, Animals, Basic Helix-Loop-Helix Transcription Factors, Brugada Syndrome, Case-Control Studies, Chromosomes, Human, Pair 3, Chromosomes, Human, Pair 6, Death, Sudden, Cardiac, Female, Genetic Predisposition to Disease, Genetic Variation, Genome-Wide Association Study, Humans, Male, Mice, Mice, Knockout, NAV1.5 Voltage-Gated Sodium Channel, NAV1.8 Voltage-Gated Sodium Channel, Odds Ratio, Polymorphism, Single Nucleotide, Repressor Proteins, Sodium Channels
Show Abstract · Added March 7, 2014
Brugada syndrome is a rare cardiac arrhythmia disorder, causally related to SCN5A mutations in around 20% of cases. Through a genome-wide association study of 312 individuals with Brugada syndrome and 1,115 controls, we detected 2 significant association signals at the SCN10A locus (rs10428132) and near the HEY2 gene (rs9388451). Independent replication confirmed both signals (meta-analyses: rs10428132, P = 1.0 × 10(-68); rs9388451, P = 5.1 × 10(-17)) and identified one additional signal in SCN5A (at 3p21; rs11708996, P = 1.0 × 10(-14)). The cumulative effect of the three loci on disease susceptibility was unexpectedly large (Ptrend = 6.1 × 10(-81)). The association signals at SCN5A-SCN10A demonstrate that genetic polymorphisms modulating cardiac conduction can also influence susceptibility to cardiac arrhythmia. The implication of association with HEY2, supported by new evidence that Hey2 regulates cardiac electrical activity, shows that Brugada syndrome may originate from altered transcriptional programming during cardiac development. Altogether, our findings indicate that common genetic variation can have a strong impact on the predisposition to rare diseases.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Proliferation of embryonic cardiomyocytes in zebrafish requires the sodium channel scn5Lab.
Bennett JS, Stroud DM, Becker JR, Roden DM
(2013) Genesis 51: 562-74
MeSH Terms: Animals, Cell Differentiation, Cell Proliferation, Heart, Homeobox Protein Nkx-2.5, Morphogenesis, Morpholinos, Myocytes, Cardiac, NAV1.5 Voltage-Gated Sodium Channel, Transcription Factors, Zebrafish, Zebrafish Proteins
Show Abstract · Added July 21, 2014
In mice, homozygous deletion of the cardiac sodium channel Scn5a results in defects in cardiac morphology and embryonic death before robust sodium current can be detected. In zebrafish, morpholino knockdown of cardiac sodium channel orthologs scn5Laa and scn5Lab perturbs specification of precardiac mesoderm and inhibits growth of the embryonic heart. It is not known which developmental processes are perturbed by sodium channel knockdown and whether reduced cell number is from impaired migration of cardiac progenitors into the heart, impaired myocyte proliferation, or both. We found that embryos deficient in scn5Lab displayed defects in primary cardiogenesis specific to loss of nkx2.5, but not nkx2.7. We generated kaede reporter fish and demonstrated that embryos treated with anti-scn5Lab morpholino showed normal secondary differentiation of cardiomyocytes at the arterial pole between 30 and 48 h post-fertilization. However, while proliferating myocytes were readily detected at 48 hpf in wild type embryos, there were no BrdU-positive cardiomyocytes in embryos subjected to anti-scn5Lab treatment. Proliferating myocytes were present in embryos injected with anti-tnnt2 morpholino to phenocopy the silent heart mutation, and absent in embryos injected with anti-tnnt2 and anti-scn5Lab morpholinos, indicating cardiac contraction is not required for the loss of proliferation. These data demonstrate that the role of scn5Lab in later heart growth does not involve contribution of the secondary heart field, but rather proliferation of cardiomyocytes, and appears unrelated to the role of the channel in cardiac electrogenesis.
Copyright © 2013 Wiley Periodicals, Inc.
1 Communities
0 Members
0 Resources
12 MeSH Terms