Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 9 of 9

Publication Record

Connections

The synthetic neuroactive steroid SGE-516 reduces seizure burden and improves survival in a Dravet syndrome mouse model.
Hawkins NA, Lewis M, Hammond RS, Doherty JJ, Kearney JA
(2017) Sci Rep 7: 15327
MeSH Terms: Animals, Anticonvulsants, Epilepsies, Myoclonic, GABA-A Receptor Agonists, Hydroxycholesterols, Mice, Mice, Mutant Strains, NAV1.1 Voltage-Gated Sodium Channel, Receptors, GABA-A
Show Abstract · Added October 2, 2018
Dravet syndrome is an infant-onset epileptic encephalopathy with multiple seizure types that are often refractory to conventional therapies. Treatment with standard benzodiazepines like clobazam, in combination with valproate and stiripentol, provides only modest seizure control. While benzodiazepines are a first-line therapy for Dravet syndrome, they are limited by their ability to only modulate synaptic receptors. Unlike benzodiazepines, neuroactive steroids potentiate a wider-range of GABA receptors. The synthetic neuroactive steroid SGE-516 is a potent positive allosteric modulator of both synaptic and extrasynaptic GABA receptors. Prior work demonstrated anticonvulsant activity of SGE-516 in acute seizure assays in rodents. In this study, we evaluated activity of SGE-516 on epilepsy phenotypes in the Scn1a mouse model that recapitulates many features of Dravet syndrome, including spontaneous seizures, premature death and seizures triggered by hyperthermia. To evaluate SGE-516 in Scn1a mice, we determined the effect of treatment on hyperthermia-induced seizures, spontaneous seizure frequency and survival. SGE-516 treatment protected against hyperthermia-induced seizures, reduced spontaneous seizure frequency and prolonged survival in the Scn1a mice. This provides the first evidence of SGE-516 activity in a mouse model of Dravet syndrome, and supports further investigation of neuroactive steroids as potential anticonvulsant compounds for refractory epilepsies.
1 Communities
0 Members
0 Resources
9 MeSH Terms
Unexpected Efficacy of a Novel Sodium Channel Modulator in Dravet Syndrome.
Anderson LL, Hawkins NA, Thompson CH, Kearney JA, George AL
(2017) Sci Rep 7: 1682
MeSH Terms: Action Potentials, Animals, Epilepsies, Myoclonic, Ion Channel Gating, Mice, Inbred C57BL, Mice, Knockout, NAV1.1 Voltage-Gated Sodium Channel, NAV1.6 Voltage-Gated Sodium Channel, Neurons, Pyramidal Cells, Pyridines, Seizures, Survival Analysis, Triazoles
Show Abstract · Added October 2, 2018
Dravet syndrome, an epileptic encephalopathy affecting children, largely results from heterozygous loss-of-function mutations in the brain voltage-gated sodium channel gene SCN1A. Heterozygous Scn1a knockout (Scn1a ) mice recapitulate the severe epilepsy phenotype of Dravet syndrome and are an accepted animal model. Because clinical observations suggest conventional sodium channel blocking antiepileptic drugs may worsen the disease, we predicted the phenotype of Scn1a mice would be exacerbated by GS967, a potent, unconventional sodium channel blocker. Unexpectedly, GS967 significantly improved survival of Scn1a mice and suppressed spontaneous seizures. By contrast, lamotrigine exacerbated the seizure phenotype. Electrophysiological recordings of acutely dissociated neurons revealed that chronic GS967-treatment had no impact on evoked action potential firing frequency of interneurons, but did suppress aberrant spontaneous firing of pyramidal neurons and was associated with significantly lower sodium current density. Lamotrigine had no effects on neuronal excitability of either neuron subtype. Additionally, chronically GS967-treated Scn1a mice exhibited normalized pyramidal neuron sodium current density and reduced hippocampal Na1.6 protein levels, whereas lamotrigine treatment had no effect on either pyramidal neuron sodium current or hippocampal Na1.6 levels. Our findings demonstrate unexpected efficacy of a novel sodium channel blocker in Dravet syndrome and suggest a potential mechanism involving a secondary change in Na1.6.
1 Communities
0 Members
0 Resources
14 MeSH Terms
Fine Mapping of a Dravet Syndrome Modifier Locus on Mouse Chromosome 5 and Candidate Gene Analysis by RNA-Seq.
Hawkins NA, Zachwieja NJ, Miller AR, Anderson LL, Kearney JA
(2016) PLoS Genet 12: e1006398
MeSH Terms: Animals, Benzodiazepines, Chromosome Mapping, Chromosomes, Clobazam, Disease Models, Animal, Epilepsies, Myoclonic, Epilepsy, Gene Expression Regulation, Genes, Modifier, Genetic Association Studies, High-Throughput Nucleotide Sequencing, Humans, Mice, Mice, Knockout, Mutation, NAV1.1 Voltage-Gated Sodium Channel, Phenotype, Receptors, GABA-A, Seizures
Show Abstract · Added October 2, 2018
A substantial number of mutations have been identified in voltage-gated sodium channel genes that result in various forms of human epilepsy. SCN1A mutations result in a spectrum of severity ranging from mild febrile seizures to Dravet syndrome, an infant-onset epileptic encephalopathy. Dravet syndrome patients experience multiple seizures types that are often refractory to treatment, developmental delays, and elevated risk for SUDEP. The same sodium channel mutation can produce epilepsy phenotypes of varying clinical severity. This suggests that other factors, including genetic, modify the primary mutation and change disease severity. Mouse models provide a useful tool in studying the genetic basis of epilepsy. The mouse strain background can alter phenotype severity, supporting a contribution of genetic modifiers in epilepsy. The Scn1a+/- mouse model has a strain-dependent epilepsy phenotype. Scn1a+/- mice on the 129S6/SvEvTac (129) strain have a normal phenotype and lifespan, while [129xC57BL/6J]F1-Scn1a+/- mice experience spontaneous seizures, hyperthermia-induced seizures and high rates of premature death. We hypothesize the phenotypic differences are due to strain-specific genetic modifiers that influence expressivity of the Scn1a+/- phenotype. Low resolution mapping of Scn1a+/- identified several Dravet syndrome modifier (Dsm) loci responsible for the strain-dependent difference in survival. One locus of interest, Dsm1 located on chromosome 5, was fine mapped to a 9 Mb region using interval specific congenics. RNA-Seq was then utilized to identify candidate modifier genes within this narrowed region. Three genes with significant total gene expression differences between 129S6/SvEvTac and [129xC57BL/6J]F1 were identified, including the GABAA receptor subunit, Gabra2. Further analysis of Gabra2 demonstrated allele-specific expression. Pharmological manipulation by clobazam, a common anticonvulsant with preferential affinity for the GABRA2 receptor, revealed dose-dependent protection against hyperthermia-induced seizures in Scn1a+/- mice. These findings support Gabra2 as a genetic modifier of the Scn1a+/- mouse model of Dravet syndrome.
1 Communities
0 Members
0 Resources
20 MeSH Terms
Strain- and age-dependent hippocampal neuron sodium currents correlate with epilepsy severity in Dravet syndrome mice.
Mistry AM, Thompson CH, Miller AR, Vanoye CG, George AL, Kearney JA
(2014) Neurobiol Dis 65: 1-11
MeSH Terms: Age Factors, Animals, Animals, Newborn, Cells, Cultured, Disease Models, Animal, Electric Stimulation, Epilepsies, Myoclonic, Female, Glial Fibrillary Acidic Protein, Glutamate Decarboxylase, Heterozygote, Hippocampus, In Vitro Techniques, Male, Membrane Potentials, Mice, Mice, Transgenic, NAV1.1 Voltage-Gated Sodium Channel, Nerve Tissue Proteins, Neurons
Show Abstract · Added May 27, 2014
Heterozygous loss-of-function SCN1A mutations cause Dravet syndrome, an epileptic encephalopathy of infancy that exhibits variable clinical severity. We utilized a heterozygous Scn1a knockout (Scn1a(+/-)) mouse model of Dravet syndrome to investigate the basis for phenotype variability. These animals exhibit strain-dependent seizure severity and survival. Scn1a(+/-) mice on strain 129S6/SvEvTac (129.Scn1a(+/-)) have no overt phenotype and normal survival compared with Scn1a(+/-) mice bred to C57BL/6J (F1.Scn1a(+/-)) that have severe epilepsy and premature lethality. We tested the hypothesis that strain differences in sodium current (INa) density in hippocampal neurons contribute to these divergent phenotypes. Whole-cell voltage-clamp recording was performed on acutely-dissociated hippocampal neurons from postnatal days 21-24 (P21-24) 129.Scn1a(+/-) or F1.Scn1a(+/-) mice and wild-type littermates. INa density was lower in GABAergic interneurons from F1.Scn1a(+/-) mice compared to wild-type littermates, while on the 129 strain there was no difference in GABAergic interneuron INa density between 129.Scn1a(+/-) mice and wild-type littermate controls. By contrast, INa density was elevated in pyramidal neurons from both 129.Scn1a(+/-) and F1.Scn1a(+/-) mice, and was correlated with more frequent spontaneous action potential firing in these neurons, as well as more sustained firing in F1.Scn1a(+/-) neurons. We also observed age-dependent differences in pyramidal neuron INa density between wild-type and Scn1a(+/-) animals. We conclude that preserved INa density in GABAergic interneurons contributes to the milder phenotype of 129.Scn1a(+/-) mice. Furthermore, elevated INa density in excitatory pyramidal neurons at P21-24 correlates with age-dependent onset of lethality in F1.Scn1a(+/-) mice. Our findings illustrate differences in hippocampal neurons that may underlie strain- and age-dependent phenotype severity in a Dravet syndrome mouse model, and emphasize a contribution of pyramidal neuron excitability.
Copyright © 2014 Elsevier Inc. All rights reserved.
1 Communities
1 Members
0 Resources
20 MeSH Terms
Ranolazine reduces neuronal excitability by interacting with inactivated states of brain sodium channels.
Kahlig KM, Hirakawa R, Liu L, George AL, Belardinelli L, Rajamani S
(2014) Mol Pharmacol 85: 162-74
MeSH Terms: Acetanilides, Action Potentials, Animals, Anticonvulsants, Cells, Cultured, Computer Simulation, Epilepsy, Hippocampus, Humans, Markov Chains, N-Methylaspartate, NAV1.1 Voltage-Gated Sodium Channel, NAV1.2 Voltage-Gated Sodium Channel, Neurons, Patch-Clamp Techniques, Piperazines, Protein Binding, Protein Conformation, Ranolazine, Rats, Voltage-Gated Sodium Channels
Show Abstract · Added March 7, 2014
Ranolazine is an approved drug for chronic stable angina that acts by suppressing a noninactivating current conducted by the cardiac sodium channel [persistent sodium ion current (INa)]. Ranolazine has also been shown to inhibit the increased persistent INa carried by NaV1.1 channels encoding epilepsy- and migraine-associated mutations. Here, we investigate the antiepileptic properties of ranolazine exhibited through the reduction of hippocampal neuronal excitability. At therapeutically relevant concentrations, ranolazine reduced action potential firing frequency of hippocampal neurons in response to repetitive depolarizing current injections. Similarly, using a single current injection paradigm, ranolazine required a long depolarization (4 seconds) to produce significant inhibition of excitability, which was similar to that observed for the anticonvulsants phenytoin (slowly binds to the fast-inactivated state) and lacosamide (binds to the slow-inactivated state). Ranolazine enhanced the development of fast and slow inactivation assessed with conditioning prepulses of 100, 1000, or 10,000 milliseconds. Recovery of channels from inactivated states was also slowed in the presence of ranolazine. Interestingly, the use-dependent inhibition of hippocampal neurons was dependent on the duration of the voltage step, suggesting ranolazine does not selectively affect the open state and may also interact with inactivated states. NEURON (Yale University, New Haven, CT) computational simulations predict equal inhibition of action potential generation for binding to either fast-inactivated or slow-inactivated states. Binding of ranolazine to either preopen or open states did not affect the excitability of the simulation. Ranolazine was able to significantly reduce the epileptiform activity of the neuronal cultures, suggesting possible antiepileptic activity.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Mapping genetic modifiers of survival in a mouse model of Dravet syndrome.
Miller AR, Hawkins NA, McCollom CE, Kearney JA
(2014) Genes Brain Behav 13: 163-72
MeSH Terms: Animals, Chromosomes, Epilepsies, Myoclonic, Genes, Modifier, Mice, Mice, Inbred C57BL, NAV1.1 Voltage-Gated Sodium Channel, Penetrance, Quantitative Trait Loci
Show Abstract · Added May 27, 2014
Epilepsy is a common neurological disorder affecting approximately 1% of the population. Mutations in voltage-gated sodium channels are responsible for several monogenic epilepsy syndromes. More than 800 mutations in the voltage-gated sodium channel SCN1A have been reported in patients with generalized epilepsy with febrile seizures plus and Dravet syndrome. Heterozygous loss-of-function mutations in SCN1A result in Dravet syndrome, a severe infant-onset epileptic encephalopathy characterized by intractable seizures, developmental delays and increased mortality. A common feature of monogenic epilepsies is variable expressivity among individuals with the same mutation, suggesting that genetic modifiers may influence clinical severity. Mice with heterozygous deletion of Scn1a (Scn1a(+/-) ) model a number of Dravet syndrome features, including spontaneous seizures and premature lethality. Phenotype severity in Scn1a(+/-) mice is strongly dependent on strain background. On the 129S6/SvEvTac strain Scn1a(+/-) mice exhibit no overt phenotype, whereas on the (C57BL/6J × 129S6/SvEvTac)F1 strain Scn1a(+/-) mice exhibit spontaneous seizures and early lethality. To systematically identify loci that influence premature lethality in Scn1a(+/-) mice, we performed genome scans on reciprocal backcrosses. Quantitative trait locus mapping revealed modifier loci on mouse chromosomes 5, 7, 8 and 11. RNA-seq analysis of strain-dependent gene expression, regulation and coding sequence variation provided a list of potential functional candidate genes at each locus. Identification of modifier genes that influence survival in Scn1a(+/-) mice will improve our understanding of the pathophysiology of Dravet syndrome and may suggest novel therapeutic strategies for improved treatment of human patients.
© 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
1 Communities
1 Members
0 Resources
9 MeSH Terms
Neuronal voltage-gated ion channels are genetic modifiers of generalized epilepsy with febrile seizures plus.
Hawkins NA, Martin MS, Frankel WN, Kearney JA, Escayg A
(2011) Neurobiol Dis 41: 655-60
MeSH Terms: Alleles, Animals, Epilepsy, Generalized, Female, Genetic Predisposition to Disease, Genetic Variation, Humans, KCNQ2 Potassium Channel, Male, Mice, Mice, 129 Strain, Mice, Inbred C57BL, Mice, Transgenic, Mutation, NAV1.1 Voltage-Gated Sodium Channel, NAV1.2 Voltage-Gated Sodium Channel, NAV1.6 Voltage-Gated Sodium Channel, Nerve Tissue Proteins, Neurons, Phenotype, Seizures, Febrile, Sodium Channels
Show Abstract · Added May 27, 2014
Mutations in the neuronal voltage-gated sodium channel genes SCN1A and SCN2A are associated with inherited epilepsies, including genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome (severe myoclonic epilepsy of infancy). The clinical presentation and severity of these epilepsies vary widely, even in people with the same mutation, suggesting the action of environmental or genetic modifiers. To gain support for the hypothesis that genetic modifiers can influence clinical presentation in patients with SCN1A-derived GEFS+, we used mouse models to study the effect of combining the human GEFS+ mutation SCN1A-R1648H with SCN2A, KCNQ2, and SCN8A mutations. Knock-in mice heterozygous for the R1648H mutation (Scn1a(RH/+)) have decreased thresholds to induced seizures and infrequent spontaneous seizures, whereas homozygotes display spontaneous seizures and premature lethality. Scn2a(Q54) transgenic mice have a mutation in Scn2a that results in spontaneous, adult-onset partial motor seizures, and mice carrying the Kcnq2-V182M mutation exhibit increased susceptibility to induced seizures, and rare spontaneous seizures as adults. Combining the Scn1a-R1648H allele with either Scn2a(Q54) or Kcnq2(V182M/+) results in early-onset, generalized tonic-clonic seizures and juvenile lethality in double heterozygous mice. In contrast, Scn8a mutants exhibit increased resistance to induced seizures. Combining the Scn1a-R1648H and Scn8a-med-jo alleles restores normal thresholds to flurothyl-induced seizures in Scn1a(RH/+) heterozygotes and improved survival of Scn1a(RH/RH) homozygotes. Our results demonstrate that variants in Scn2a, Kcnq2, and Scn8a can dramatically influence the phenotype of mice carrying the Scn1a-R1648H mutation and suggest that ion channel variants may contribute to the clinical variation seen in patients with monogenic epilepsy.
Copyright © 2010 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Multiplexed transposon-mediated stable gene transfer in human cells.
Kahlig KM, Saridey SK, Kaja A, Daniels MA, George AL, Wilson MH
(2010) Proc Natl Acad Sci U S A 107: 1343-8
MeSH Terms: Cell Line, DNA Transposable Elements, Gene Expression, Genetic Markers, Humans, NAV1.1 Voltage-Gated Sodium Channel, Nerve Tissue Proteins, Open Reading Frames, Protein Binding, Sodium Channels, Transgenes
Show Abstract · Added March 14, 2018
Generation of cultured human cells stably expressing one or more recombinant gene sequences is a widely used approach in biomedical research, biotechnology, and drug development. Conventional methods are not efficient and have severe limitations especially when engineering cells to coexpress multiple transgenes or multiprotein complexes. In this report, we harnessed the highly efficient, nonviral, and plasmid-based piggyBac transposon system to enable concurrent genomic integration of multiple independent transposons harboring distinct protein-coding DNA sequences. Flow cytometry of cell clones derived from a single multiplexed transfection demonstrated approximately 60% (three transposons) or approximately 30% (four transposons) stable coexpression of all delivered transgenes with selection for a single marker transposon. We validated multiplexed piggyBac transposon delivery by coexpressing large transgenes encoding a multisubunit neuronal voltage-gated sodium channel (SCN1A) containing a pore-forming subunit and two accessory subunits while using two additional genes for selection. Previously unobtainable robust sodium current was demonstrated through 38 passages, suitable for use on an automated high-throughput electrophysiology platform. Cotransfection of three large (up to 10.8 kb) piggyBac transposons generated a heterozygous SCN1A stable cell line expressing two separate alleles of the pore-forming subunit and two accessory subunits (total of four sodium channel subunits) with robust functional expression. We conclude that the piggyBac transposon system can be used to perform multiplexed stable gene transfer in cultured human cells, and this technology may be valuable for applications requiring concurrent expression of multiprotein complexes.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Early treatment suppresses the development of spike-wave epilepsy in a rat model.
Blumenfeld H, Klein JP, Schridde U, Vestal M, Rice T, Khera DS, Bashyal C, Giblin K, Paul-Laughinghouse C, Wang F, Phadke A, Mission J, Agarwal RK, Englot DJ, Motelow J, Nersesyan H, Waxman SG, Levin AR
(2008) Epilepsia 49: 400-9
MeSH Terms: Animals, Animals, Newborn, Anticonvulsants, Cerebral Cortex, Cyclic Nucleotide-Gated Cation Channels, Disease Models, Animal, Electroencephalography, Epilepsy, Absence, Ethosuximide, Female, Humans, Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels, Ion Channels, NAV1.1 Voltage-Gated Sodium Channel, NAV1.6 Voltage-Gated Sodium Channel, Nerve Tissue Proteins, Phenotype, Potassium Channels, Rats, Rats, Wistar, Severity of Illness Index, Sodium Channels
Show Abstract · Added August 12, 2016
PURPOSE - Current treatments for epilepsy may control seizures, but have no known effects on the underlying disease. We sought to determine whether early treatment in a model of genetic epilepsy would reduce the severity of the epilepsy phenotype in adulthood.
METHODS - We used Wistar albino Glaxo rats of Rijswijk (WAG/Rij) rats, an established model of human absence epilepsy. Oral ethosuximide was given from age p21 to 5 months, covering the usual period in which seizures develop in this model (age approximately 3 months). Two experiments were performed: (1) cortical expression of ion channels Nav1.1, Nav1.6, and HCN1 (previously shown to be dysregulated in WAG/Rij) measured by immunocytochemistry in adult treated rats; and (2) electroencephalogram (EEG) recordings to measure seizure severity at serial time points after stopping the treatment.
RESULTS - Early treatment with ethosuximide blocked changes in the expression of ion channels Nav1.1, Nav1.6, and HCN1 normally associated with epilepsy in this model. In addition, the treatment led to a persistent suppression of seizures, even after therapy was discontinued. Thus, animals treated with ethosuximide from age p21 to 5 months still had a marked suppression of seizures at age 8 months.
DISCUSSION - These findings suggest that early treatment during development may provide a new strategy for preventing epilepsy in susceptible individuals. If confirmed with other drugs and epilepsy paradigms, the availability of a model in which epileptogenesis can be controlled has important implications both for future basic studies, and human therapeutic trials.
0 Communities
1 Members
0 Resources
22 MeSH Terms