NOTICE -- Login operations are currently offline due to an unscheduled disruption. We are waiting for LDAP services to be re-instated. We apologize for the inconvenience - June 24, 2021

Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 156

Publication Record

Connections

Calmodulin Mutations Associated with Heart Arrhythmia: A Status Report.
Chazin WJ, Johnson CN
(2020) Int J Mol Sci 21:
MeSH Terms: Arrhythmias, Cardiac, Calcium Signaling, Calmodulin, Humans, Ion Channels, Long QT Syndrome, Myocytes, Cardiac, Ryanodine Receptor Calcium Release Channel, Tachycardia, Ventricular
Show Abstract · Added March 11, 2020
Calmodulin (CaM) is a ubiquitous intracellular Ca sensing protein that modifies gating of numerous ion channels. CaM has an extraordinarily high level of evolutionary conservation, which led to the fundamental assumption that mutation would be lethal. However, in 2012, complete exome sequencing of infants suffering from recurrent cardiac arrest revealed de novo mutations in the three human genes. The correlation between mutations and pathophysiology suggests defects in CaM-dependent ion channel functions. Here, we review the current state of the field for all reported CaM mutations associated with cardiac arrhythmias, including knowledge of their biochemical and structural characteristics, and progress towards understanding how these mutations affect cardiac ion channel function.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Response by Salem et al to Letter Regarding Article, "Androgenic Effects on Ventricular Repolarization: A Translational Study From the International Pharmacovigilance Database to iPSC-Cardiomyocytes".
Salem JE, Moslehi JJ, Funck Brentano C, Roden DM
(2020) Circulation 141: e63-e64
MeSH Terms: Androgens, Electrocardiography, Induced Pluripotent Stem Cells, Myocytes, Cardiac, Pharmacovigilance
Added March 24, 2020
0 Communities
2 Members
0 Resources
5 MeSH Terms
Real-time visualization of titin dynamics reveals extensive reversible photobleaching in human induced pluripotent stem cell-derived cardiomyocytes.
Cadar AG, Feaster TK, Bersell KR, Wang L, Hong T, Balsamo JA, Zhang Z, Chun YW, Nam YJ, Gotthardt M, Knollmann BC, Roden DM, Lim CC, Hong CC
(2020) Am J Physiol Cell Physiol 318: C163-C173
MeSH Terms: Adult, Cell Differentiation, Cell Line, Connectin, Fluorescence Recovery After Photobleaching, Humans, Induced Pluripotent Stem Cells, Kinetics, Luminescent Proteins, Male, Microscopy, Fluorescence, Microscopy, Video, Myocytes, Cardiac, Recombinant Fusion Proteins, Reproducibility of Results, Sarcomeres
Show Abstract · Added March 24, 2020
Fluorescence recovery after photobleaching (FRAP) has been useful in delineating cardiac myofilament biology, and innovations in fluorophore chemistry have expanded the array of microscopic assays used. However, one assumption in FRAP is the irreversible photobleaching of fluorescent proteins after laser excitation. Here we demonstrate reversible photobleaching regarding the photoconvertible fluorescent protein mEos3.2. We used CRISPR/Cas9 genome editing in human induced pluripotent stem cells (hiPSCs) to knock-in mEos3.2 into the COOH terminus of titin to visualize sarcomeric titin incorporation and turnover. Upon cardiac induction, the titin-mEos3.2 fusion protein is expressed and integrated in the sarcomeres of hiPSC-derived cardiomyocytes (CMs). STORM imaging shows M-band clustered regions of bound titin-mEos3.2 with few soluble titin-mEos3.2 molecules. FRAP revealed a baseline titin-mEos3.2 fluorescence recovery of 68% and half-life of ~1.2 h, suggesting a rapid exchange of sarcomeric titin with soluble titin. However, paraformaldehyde-fixed and permeabilized titin-mEos3.2 hiPSC-CMs surprisingly revealed a 55% fluorescence recovery. Whole cell FRAP analysis in paraformaldehyde-fixed, cycloheximide-treated, and untreated titin-mEos3.2 hiPSC-CMs displayed no significant differences in fluorescence recovery. FRAP in fixed HEK 293T expressing cytosolic mEos3.2 demonstrates a 58% fluorescence recovery. These data suggest that titin-mEos3.2 is subject to reversible photobleaching following FRAP. Using a mouse titin-eGFP model, we demonstrate that no reversible photobleaching occurs. Our results reveal that reversible photobleaching accounts for the majority of titin recovery in the titin-mEos3.2 hiPSC-CM model and should warrant as a caution in the extrapolation of reliable FRAP data from specific fluorescent proteins in long-term cell imaging.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Stoichiometric optimization of Gata4, Hand2, Mef2c, and Tbx5 expression for contractile cardiomyocyte reprogramming.
Zhang Z, Zhang W, Nam YJ
(2019) Sci Rep 9: 14970
MeSH Terms: Animals, Basic Helix-Loop-Helix Transcription Factors, Cells, Cultured, Cellular Reprogramming, Fibroblasts, GATA4 Transcription Factor, MEF2 Transcription Factors, Mice, Mice, Transgenic, Myocardial Contraction, Myocytes, Cardiac, Phenotype, Plasmids, T-Box Domain Proteins, Transcriptome, Transduction, Genetic
Show Abstract · Added March 24, 2020
Reprogramming of fibroblasts to induced cardiomyocyte-like cells (iCMs) offers potential strategies for new cardiomyocyte generation. However, a major challenge of this approach remains its low efficiency for contractile iCMs. Here, we showed that controlled stoichiometric expression of Gata4 (G), Hand2 (H), Mef2c (M), and Tbx5 (T) significantly enhanced contractile cardiomyocyte reprogramming over previously defined stoichiometric expression of GMT or uncontrolled expression of GHMT. We generated quad-cistronic vectors expressing distinct relative protein levels of GHMT within the context of a previously defined splicing order of M-G-T with high Mef2c level. Transduction of the quad-cistronic vector with a splicing order of M-G-T-H (referred to as M-G-T-H) inducing relatively low Hand2 and high Mef2c protein levels not only increased sarcomeric protein induction, but also markedly promoted the development of contractile structures and functions in fibroblasts. The expressed Gata4 and Tbx5 protein levels by M-G-T-H transduction were relatively higher than those by transductions of other quad-cistronic vectors, but lower than those by previously defined M-G-T tri-cistronic vector transduction. Taken together, our results demonstrate the stoichiometric requirement of GHMT expression for structural and functional progresses of cardiomyocyte reprogramming and provide a new basic tool-set for future studies.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Androgenic Effects on Ventricular Repolarization: A Translational Study From the International Pharmacovigilance Database to iPSC-Cardiomyocytes.
Salem JE, Yang T, Moslehi JJ, Waintraub X, Gandjbakhch E, Bachelot A, Hidden-Lucet F, Hulot JS, Knollmann BC, Lebrun-Vignes B, Funck-Brentano C, Glazer AM, Roden DM
(2019) Circulation 140: 1070-1080
MeSH Terms: Androgens, Antineoplastic Agents, Cell Differentiation, Cells, Cultured, Databases, Factual, Humans, Hypogonadism, Induced Pluripotent Stem Cells, International Cooperation, Long QT Syndrome, Male, Myocytes, Cardiac, Pharmacovigilance, Phenylthiohydantoin, Risk, Torsades de Pointes, Translational Medical Research
Show Abstract · Added November 12, 2019
BACKGROUND - Male hypogonadism, arising from a range of etiologies including androgen-deprivation therapies (ADTs), has been reported as a risk factor for acquired long-QT syndrome (aLQTS) and torsades de pointes (TdP). A full description of the clinical features of aLQTS associated with ADT and of underlying mechanisms is lacking.
METHODS - We searched the international pharmacovigilance database VigiBase for men (n=6 560 565 individual case safety reports) presenting with aLQTS, TdP, or sudden death associated with ADT. In cardiomyocytes derived from induced pluripotent stem cells from men, we studied electrophysiological effects of ADT and dihydrotestosterone.
RESULTS - Among subjects receiving ADT in VigiBase, we identified 184 cases of aLQTS (n=168) and/or TdP (n=68; 11% fatal), and 99 with sudden death. Of the 10 ADT drugs examined, 7 had a disproportional association (reporting odds ratio=1.4-4.7; <0.05) with aLQTS, TdP, or sudden death. The minimum and median times to sudden death were 0.25 and 92 days, respectively. The androgen receptor antagonist enzalutamide was associated with more deaths (5430/31 896 [17%]; <0.0001) than other ADT used for prostate cancer (4208/52 089 [8.1%]). In induced pluripotent stem cells, acute and chronic enzalutamide (25 µM) significantly prolonged action potential durations (action potential duration at 90% when paced at 0.5 Hz; 429.7±27.1 (control) versus 982.4±33.2 (acute, <0.001) and 1062.3±28.9 ms (chronic; <0.001), and generated afterdepolarizations and/or triggered activity in drug-treated cells (11/20 acutely and 8/15 chronically). Enzalutamide acutely and chronically inhibited delayed rectifier potassium current, and chronically enhanced late sodium current. Dihydrotestosterone (30 nM) reversed enzalutamide electrophysiological effects on induced pluripotent stem cells.
CONCLUSIONS - QT prolongation and TdP are a risk in men receiving enzalutamide and other ADTs.
CLINICAL TRIAL REGISTRATION - URL: https://www.clinicaltrials.gov. Unique identifier: NCT03193138.
0 Communities
2 Members
0 Resources
17 MeSH Terms
SCN5A variant R222Q generated abnormal changes in cardiac sodium current and action potentials in murine myocytes and Purkinje cells.
Daniel LL, Yang T, Kroncke B, Hall L, Stroud D, Roden DM
(2019) Heart Rhythm 16: 1676-1685
MeSH Terms: Action Potentials, Alleles, Animals, Disease Models, Animal, Echocardiography, Electrocardiography, Mice, Mice, Transgenic, Myocytes, Cardiac, NAV1.5 Voltage-Gated Sodium Channel, Purkinje Cells, Sodium Channels
Show Abstract · Added June 14, 2019
BACKGROUND - The cardiac sodium channel (SCN5A) mutation R222Q neutralizes a positive charge in the domain I voltage sensor. Mutation carriers display very frequent ectopy and dilated cardiomyopathy.
OBJECTIVES - To describe the effect of SCN5A R222Q on murine myocyte and Purkinje fiber electrophysiology, and identify underlying mechanisms.
METHODS - We generated mice carrying humanized wild-type (H) and mutant (RQ) SCN5A channels. We characterized whole-heart and isolated ventricular and Purkinje myocyte properties.
RESULTS - RQ/RQ mice were not viable. I from RQ/H ventricular myocytes displayed increased "window current" and hyperpolarizing shifts in both inactivation and activation compared to H/H, as previously reported in heterologous expression systems. Surprisingly, action potentials were markedly abbreviated in RQ/H myocytes (action potential durations at 90% repolarization: 12.6 ± 1.3 ms vs 29.1 ± 1.0 ms in H/H, P < .01, n = 10 each). We identified a large [K]-dependent outward gating pore current in RQ/H but not H/H myocytes, and decreasing [K] elicited early afterdepolarizations (EADs) and triggered activity in isolated myocytes and ectopic beats in whole hearts. Further, RQ/H Purkinje cells displayed striking, consistent low-voltage EADs. In vivo, however, RQ/H mice displayed little ectopy and contractile function was normal.
CONCLUSION - While SCN5A R222Q increases plateau inward sodium current, action potentials were unexpectedly shortened, likely reflecting an outward gating-pore current. Low extracellular potassium increased this pore current, and was arrhythmogenic in vitro and ex vivo.
Copyright © 2019 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
1 Communities
2 Members
0 Resources
12 MeSH Terms
Electrophysiologic and molecular mechanisms of a frameshift NPPA mutation linked with familial atrial fibrillation.
Menon A, Hong L, Savio-Galimberti E, Sridhar A, Youn SW, Zhang M, Kor K, Blair M, Kupershmidt S, Darbar D
(2019) J Mol Cell Cardiol 132: 24-35
MeSH Terms: Action Potentials, Animals, Atrial Fibrillation, Atrial Natriuretic Factor, Electrophysiological Phenomena, Frameshift Mutation, Heart Atria, Humans, Membrane Potentials, Mice, Mice, Transgenic, Myocytes, Cardiac, NAV1.5 Voltage-Gated Sodium Channel
Show Abstract · Added June 14, 2019
A frameshift (fs) mutation in the natriuretic peptide precursor A (NPPA) gene, encoding a mutant atrial natriuretic peptide (Mut-ANP), has been linked with familial atrial fibrillation (AF) but the underlying mechanisms by which the mutation causes AF remain unclear. We engineered 2 transgenic (TG) mouse lines expressing the wild-type (WT)-NPPA gene (H-WT-NPPA) and the human fs-Mut-NPPA gene (H-fsMut-NPPA) to test the hypothesis that mice overexpressing the human NPPA mutation are more susceptible to AF and elucidate the underlying electrophysiologic and molecular mechanisms. Transthoracic echocardiography and surface electrocardiography (ECG) were performed in H-fsMut-NPPA, H-WT-NPPA, and Non-TG mice. Invasive electrophysiology, immunohistochemistry, Western blotting and patch clamping of membrane potentials were performed. To examine the role of the Mut-ANP in ion channel remodeling, we measured plasma cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) levels and protein kinase A (PKA) activity in the 3 groups of mice. In H-fsMut-NPPA mice mean arterial pressure (MAP) was reduced when compared to H-WT-NPPA and Non-TG mice. Furthermore, injection of synthetic fs-Mut-ANP lowered the MAP in H-WT-NPPA and Non-TG mice while synthetic WT-ANP had no effect on MAP in the 3 groups of mice. ECG characterization revealed significantly prolonged QRS duration in H-fsMut-NPPA mice when compared to the other two groups. Trans-Esophageal (TE) atrial pacing of H-fsMut-NPPA mice showed increased AF burden and AF episodes when compared with H-WT-NPPA or Non-TG mice. The cardiac Na (NaV1.5) and Ca (CaV1.2/CaV1.3) channel expression and currents (I, I) and action potential durations (APD/APD/APD) were significantly reduced in H-fsMut-NPPA mice while the rectifier K channel current (I) was markedly increased when compared to the other 2 groups of mice. In addition, plasma cGMP levels were only increased in H-fsMut-NPPA mice with a corresponding reduction in plasma cAMP levels and PKA activity. In summary, we showed that mice overexpressing an AF-linked NPPA mutation are more prone to develop AF and this risk is mediated in part by remodeling of the cardiac Na, Ca and K channels creating an electrophysiologic substrate for reentrant AF.
Copyright © 2019 Elsevier Ltd. All rights reserved.
1 Communities
0 Members
0 Resources
13 MeSH Terms
Ensuring expression of four core cardiogenic transcription factors enhances cardiac reprogramming.
Zhang Z, Zhang AD, Kim LJ, Nam YJ
(2019) Sci Rep 9: 6362
MeSH Terms: Animals, Basic Helix-Loop-Helix Transcription Factors, Cell Differentiation, Cells, Cultured, Cellular Reprogramming, Fibroblasts, GATA4 Transcription Factor, Gene Expression, MEF2 Transcription Factors, Mice, Inbred C57BL, Mice, Transgenic, Muscle Proteins, Myocytes, Cardiac, Sarcomeres, T-Box Domain Proteins, Transcription Factors
Show Abstract · Added March 24, 2020
Previous studies have shown that forced expression of core cardiogenic transcription factors can directly reprogram fibroblasts to induced cardiomyocyte-like cells (iCMs). This cardiac reprogramming approach suggests a potential strategy for cardiomyocyte regeneration. However, a major challenge of this approach remains the low conversion rate. Here, we showed that ensuring expression of four cardiogenic transcription factors (i.e. Gata4 (G), Hand2 (H), Mef2c (M), and Tbx5 (T)) in individual fibroblasts is an initial bottleneck for cardiac reprogramming. Following co-transduction of three or four retroviral vectors encoding individual cardiogenic transcription factors, only a minor subpopulation of cells indeed expressed all three (GMT) or four (GHMT) factors. By selectively analyzing subpopulations of cells expressing various combinations of reprogramming factors, we found that co-expression of GMT in individual fibroblasts is sufficient to induce sarcomeric proteins. However, only a small fraction of those cells expressing GMT were able to develop organized sarcomeric structures and contractility. In contrast, ensuring expression of GHMT markedly enhanced the development of contractile cardiac structures and functions in fibroblasts, although its incremental effect on sarcomeric protein induction was relatively small. Our findings provide new insights into the mechanistic basis of inefficient cardiac reprogramming and can help to devise efficient reprogramming strategies.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Discovering small molecules as Wnt inhibitors that promote heart regeneration and injury repair.
Xie S, Fu W, Yu G, Hu X, Lai KS, Peng X, Zhou Y, Zhu X, Christov P, Sawyer L, Ni TT, Sulikowski GA, Yang Z, Lee E, Zeng C, Wang WE, Zhong TP
(2020) J Mol Cell Biol 12: 42-54
MeSH Terms: Animals, Animals, Genetically Modified, Cell Differentiation, Cell Line, Cell Proliferation, Disease Models, Animal, Heart Injuries, Male, Mice, Mice, Inbred C57BL, Mouse Embryonic Stem Cells, Myocardial Infarction, Myocytes, Cardiac, Regenerative Medicine, Signal Transduction, Small Molecule Libraries, Wnt Proteins, Wnt Signaling Pathway, Wound Healing, Zebrafish, Zebrafish Proteins, beta Catenin
Show Abstract · Added April 10, 2019
There are intense interests in discovering proregenerative medicine leads that can promote cardiac differentiation and regeneration, as well as repair damaged heart tissues. We have combined zebrafish embryo-based screens with cardiomyogenesis assays to discover selective small molecules that modulate heart development and regeneration with minimal adverse effects. Two related compounds with novel structures, named as Cardiomogen 1 and 2 (CDMG1 and CDMG2), were identified for their capacity to promote myocardial hyperplasia through expansion of the cardiac progenitor cell population. We find that Cardiomogen acts as a Wnt inhibitor by targeting β-catenin and reducing Tcf/Lef-mediated transcription in cultured cells. CDMG treatment of amputated zebrafish hearts reduces nuclear β-catenin in injured heart tissue, increases cardiomyocyte (CM) proliferation, and expedites wound healing, thus accelerating cardiac muscle regeneration. Importantly, Cardiomogen can alleviate the functional deterioration of mammalian hearts after myocardial infarction. Injured hearts exposed to CDMG1 display increased newly formed CMs and reduced fibrotic scar tissue, which are in part attributable to the β-catenin reduction. Our findings indicate Cardiomogen as a Wnt inhibitor in enhancing injury-induced CM proliferation and heart regeneration, highlighting the values of embryo-based small molecule screens in discovery of effective and safe medicine leads.
© The Author(s) (2019). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Multiple mechanisms underlie increased cardiac late sodium current.
Kroncke BM, Yang T, Roden DM
(2019) Heart Rhythm 16: 1091-1097
MeSH Terms: Action Potentials, Animals, CHO Cells, Cardiac Conduction System Disease, Cricetinae, Cricetulus, Genotype, Humans, Induced Pluripotent Stem Cells, Kidney, Long QT Syndrome, Myocytes, Cardiac, NAV1.5 Voltage-Gated Sodium Channel, Phenotype, Phosphatidylinositol 3-Kinases
Show Abstract · Added March 26, 2019
BACKGROUND - We recently reported a quantitative relationship between the degree of functional perturbation reported in the literature for 356 variants in the cardiac sodium channel gene SCN5A and the penetrance of resulting arrhythmia phenotypes. In the course of that work, we identified multiple SCN5A variants, including R1193Q, that are common in populations but are reported in human embryonic kidney (HEK) cells to generate large late sodium current (I).
OBJECTIVE - The purpose of this study was to compare the functional properties of R1193Q with those of the well-studied type 3 long QT syndrome mutation ΔKPQ.
METHODS - We compared functional properties of SCN5A R1193Q with those of ΔKPQ in Chinese hamster ovary (CHO) cells at baseline and after exposure to intracellular phosphatidylinositol (3,4,5)-trisphosphate (PIP), which inhibits I generated by decreased Phosphoinositide 3-kinase (PI3K) activity. We also used CRISPR/Cas9 editing to generate R1193Q in human-induced pluripotent stem cells differentiated to cardiomyocytes (hiPSC-CMs).
RESULTS - Both R1193Q and ΔKPQ generated robust I in CHO cells. PIP abrogated the late current phenotype in R1193Q cells but had no effect on ΔKPQ. Homozygous R1193Q hiPSC-CMs displayed increased I and long action potentials with frequent triggered beats, which were reversed with the addition of PIP.
CONCLUSION - The consistency between the late current produced in HEK cells, CHO cells, and hiPSC-CMs suggests that the late current is a feature of the SCN5A R1193Q variant in human cardiomyocytes but that the mechanism by which the late current is produced is distinct and indirect, as compared with the more highly penetrant ΔKPQ. These data suggest that observing a late current in an in vitro setting does not necessarily translate to highly pathogenic type 3 long QT syndrome phenotype but depends on the underlying mechanism.
Copyright © 2019 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
0 Communities
3 Members
0 Resources
15 MeSH Terms