Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 43

Publication Record

Connections

VacA Targets Myeloid Cells in the Gastric Lamina Propria To Promote Peripherally Induced Regulatory T-Cell Differentiation and Persistent Infection.
Altobelli A, Bauer M, Velez K, Cover TL, Müller A
(2019) MBio 10:
MeSH Terms: Animals, Bacterial Proteins, Cell Differentiation, Dendritic Cells, Disease Models, Animal, Gastric Mucosa, Helicobacter Infections, Helicobacter pylori, Immune Evasion, Interleukin-10, Interleukin-23, Lung, Macrophages, Mice, Mucous Membrane, Myeloid Cells, T-Lymphocytes, Regulatory, Transforming Growth Factor beta
Show Abstract · Added April 11, 2019
The gastric bacterium causes a persistent infection that is directly responsible for gastric ulcers and gastric cancer in some patients and protective against allergic and other immunological disorders in others. The two outcomes of the -host interaction can be modeled in mice that are infected as immunocompetent adults and as neonates, respectively. Here, we have investigated the contribution of the immunomodulator VacA to -specific local and systemic immune responses in both models. We found that neonatally infected mice are colonized at higher levels than mice infected as adults and fail to generate effector T-cell responses to the bacteria; rather, T-cell responses in neonatally infected mice are skewed toward Foxp3-positive (Foxp3) regulatory T cells that are neuropilin negative and express RORγt. We found these peripherally induced regulatory T cells (pTregs) to be enriched, in a VacA-dependent manner, not only in the gastric mucosa but also in the lungs of infected mice. Pulmonary pTreg accumulation was observed in mice that have been infected neonatally with wild-type but not in mice that have been infected as adults or mice infected with a VacA null mutant. Finally, we traced VacA to gastric lamina propria myeloid cells and show that it suppressed interleukin-23 (IL-23) expression by dendritic cells and induced IL-10 and TGF-β expression in macrophages. Taken together, the results are consistent with the idea that creates a tolerogenic environment through its immunomodulator VacA, which skews T-cell responses toward Tregs, favors persistence, and affects immunity at distant sites. has coexisted with humans for at least 60.000 years and has evolved persistence strategies that allow it to evade host immunity and colonize its host for life. The VacA protein is expressed by all strains and is required for high-level persistent infection in experimental mouse models. Here, we show that VacA targets myeloid cells in the gastric mucosa to create a tolerogenic environment that facilitates regulatory T-cell differentiation, while suppressing effector T-cell priming and functionality. Tregs that are induced in the periphery during infection can be found not only in the stomach but also in the lungs of infected mice, where they are likely to affect immune responses to allergens.
Copyright © 2019 Altobelli et al.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Helicobacter: Inflammation, immunology, and vaccines.
Blosse A, Lehours P, Wilson KT, Gobert AP
(2018) Helicobacter 23 Suppl 1: e12517
MeSH Terms: Animals, Bacterial Vaccines, Epithelial Cells, Helicobacter Infections, Helicobacter pylori, Humans, Inflammation, Myeloid Cells
Show Abstract · Added December 16, 2018
Helicobacter pylori infection induces a chronic gastric inflammation which can lead to gastric ulcers and cancer. The mucosal immune response to H. pylori is first initiated by the activation of gastric epithelial cells that respond to numerous bacterial factors, such as the cytotoxin-associated gene A or the lipopolysaccharide intermediate heptose-1,7-bisphosphate. The response of these cells is orchestrated by different receptors including the intracellular nucleotide-binding oligomerization domain-containing protein 1 or the extracellular epidermal growth factor receptor. This nonspecific response leads to recruitment and activation of various myeloid (macrophages and dendritic cells) and T cells (T helper-17 and mucosal-associated invariant T cells), which magnify and maintain inflammation. In this review, we summarize the major advances made in the past year regarding the induction, the regulation, and the role of the innate and adaptive immune responses to H. pylori infection. We also recapitulate efforts that have been made to develop efficient vaccine strategies.
© 2018 John Wiley & Sons Ltd.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Myeloid-derived interleukin-1β drives oncogenic KRAS-NF-κΒ addiction in malignant pleural effusion.
Marazioti A, Lilis I, Vreka M, Apostolopoulou H, Kalogeropoulou A, Giopanou I, Giotopoulou GA, Krontira AC, Iliopoulou M, Kanellakis NI, Agalioti T, Giannou AD, Jones-Paris C, Iwakura Y, Kardamakis D, Blackwell TS, Taraviras S, Spella M, Stathopoulos GT
(2018) Nat Commun 9: 672
MeSH Terms: Animals, Cell Line, Tumor, Chemokine CXCL1, Female, Genes, ras, Humans, I-kappa B Kinase, Interleukin-1beta, Male, Mice, Mice, Inbred C57BL, Mutation, Myeloid Cells, NF-kappa B, Pleural Effusion, Malignant, Receptors, Interleukin-1
Show Abstract · Added March 21, 2018
Malignant pleural effusion (MPE) is a frequent metastatic manifestation of human cancers. While we previously identified KRAS mutations as molecular culprits of MPE formation, the underlying mechanism remained unknown. Here, we determine that non-canonical IKKα-RelB pathway activation of KRAS-mutant tumor cells mediates MPE development and this is fueled by host-provided interleukin IL-1β. Indeed, IKKα is required for the MPE-competence of KRAS-mutant tumor cells by activating non-canonical NF-κB signaling. IL-1β fuels addiction of mutant KRAS to IKKα resulting in increased CXCL1 secretion that fosters MPE-associated inflammation. Importantly, IL-1β-mediated NF-κB induction in KRAS-mutant tumor cells, as well as their resulting MPE-competence, can only be blocked by co-inhibition of both KRAS and IKKα, a strategy that overcomes drug resistance to individual treatments. Hence we show that mutant KRAS facilitates IKKα-mediated responsiveness of tumor cells to host IL-1β, thereby establishing a host-to-tumor signaling circuit that culminates in inflammatory MPE development and drug resistance.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Bacteroides fragilis Toxin Coordinates a Pro-carcinogenic Inflammatory Cascade via Targeting of Colonic Epithelial Cells.
Chung L, Thiele Orberg E, Geis AL, Chan JL, Fu K, DeStefano Shields CE, Dejea CM, Fathi P, Chen J, Finard BB, Tam AJ, McAllister F, Fan H, Wu X, Ganguly S, Lebid A, Metz P, Van Meerbeke SW, Huso DL, Wick EC, Pardoll DM, Wan F, Wu S, Sears CL, Housseau F
(2018) Cell Host Microbe 23: 203-214.e5
MeSH Terms: Adenomatous Polyposis Coli Protein, Animals, Bacterial Toxins, Bacteroides fragilis, Carcinogenesis, Cell Line, Tumor, Colon, Colorectal Neoplasms, Enzyme Activation, Epithelial Cells, Female, Gene Deletion, HT29 Cells, Humans, Inflammation, Interleukin-17, Male, Metalloendopeptidases, Mice, Mice, Inbred C57BL, Mice, Knockout, Myeloid Cells, Receptors, Interleukin-17, Receptors, Interleukin-8B, STAT3 Transcription Factor, Transcription Factor RelA
Show Abstract · Added March 20, 2018
Pro-carcinogenic bacteria have the potential to initiate and/or promote colon cancer, in part via immune mechanisms that are incompletely understood. Using Apc mice colonized with the human pathobiont enterotoxigenic Bacteroides fragilis (ETBF) as a model of microbe-induced colon tumorigenesis, we show that the Bacteroides fragilis toxin (BFT) triggers a pro-carcinogenic, multi-step inflammatory cascade requiring IL-17R, NF-κB, and Stat3 signaling in colonic epithelial cells (CECs). Although necessary, Stat3 activation in CECs is not sufficient to trigger ETBF colon tumorigenesis. Notably, IL-17-dependent NF-κB activation in CECs induces a proximal to distal mucosal gradient of C-X-C chemokines, including CXCL1, that mediates the recruitment of CXCR2-expressing polymorphonuclear immature myeloid cells with parallel onset of ETBF-mediated distal colon tumorigenesis. Thus, BFT induces a pro-carcinogenic signaling relay from the CEC to a mucosal Th17 response that results in selective NF-κB activation in distal colon CECs, which collectively triggers myeloid-cell-dependent distal colon tumorigenesis.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
26 MeSH Terms
Neutrophil-Derived IL-1β Impairs the Efficacy of NF-κB Inhibitors against Lung Cancer.
McLoed AG, Sherrill TP, Cheng DS, Han W, Saxon JA, Gleaves LA, Wu P, Polosukhin VV, Karin M, Yull FE, Stathopoulos GT, Georgoulias V, Zaynagetdinov R, Blackwell TS
(2016) Cell Rep 16: 120-132
MeSH Terms: Animals, Bortezomib, Carcinogenesis, Carcinoma, Non-Small-Cell Lung, Cell Proliferation, Epithelial Cells, Humans, I-kappa B Kinase, Interleukin-1beta, Lung Neoplasms, Mice, Myeloid Cells, NF-kappa B, Neutrophils, Signal Transduction, Survival Analysis
Show Abstract · Added March 29, 2017
Although epithelial NF-κB signaling is important for lung carcinogenesis, NF-κB inhibitors are ineffective for cancer treatment. To explain this paradox, we studied mice with genetic deletion of IKKβ in myeloid cells and found enhanced tumorigenesis in Kras(G12D) and urethane models of lung cancer. Myeloid-specific inhibition of NF-κB augmented pro-IL-1β processing by cathepsin G in neutrophils, leading to increased IL-1β and enhanced epithelial cell proliferation. Combined treatment with bortezomib, a proteasome inhibitor that blocks NF-κB activation, and IL-1 receptor antagonist reduced tumor formation and growth in vivo. In lung cancer patients, plasma IL-1β levels correlated with poor prognosis, and IL-1β increased following bortezomib treatment. Together, our studies elucidate an important role for neutrophils and IL-1β in lung carcinogenesis and resistance to NF-κB inhibitors.
Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
2 Communities
2 Members
0 Resources
16 MeSH Terms
Sepsis Induces Hematopoietic Stem Cell Exhaustion and Myelosuppression through Distinct Contributions of TRIF and MYD88.
Zhang H, Rodriguez S, Wang L, Wang S, Serezani H, Kapur R, Cardoso AA, Carlesso N
(2016) Stem Cell Reports 6: 940-956
MeSH Terms: Adaptor Proteins, Vesicular Transport, Animals, CCAAT-Enhancer-Binding Proteins, Cell Cycle, Disease Models, Animal, Gene Expression Regulation, Hematopoietic Stem Cells, Lipopolysaccharides, Mice, Mice, Knockout, Myeloid Cells, Myeloid Differentiation Factor 88, Proto-Oncogene Proteins, Sepsis, Signal Transduction, Toll-Like Receptor 4, Trans-Activators, Transcription, Genetic
Show Abstract · Added June 12, 2017
Toll-like receptor 4 (TLR4) plays a central role in host responses to bacterial infection, but the precise mechanism(s) by which its downstream signaling components coordinate the bone marrow response to sepsis is poorly understood. Using mice deficient in TLR4 downstream adapters MYD88 or TRIF, we demonstrate that both cell-autonomous and non-cell-autonomous MYD88 activation are major causes of myelosuppression during sepsis, while having a modest impact on hematopoietic stem cell (HSC) functions. In contrast, cell-intrinsic TRIF activation severely compromises HSC self-renewal without directly affecting myeloid cells. Lipopolysaccharide-induced activation of MYD88 or TRIF contributes to cell-cycle activation of HSC and induces rapid and permanent changes in transcriptional programs, as indicated by persistent downregulation of Spi1 and CebpA expression after transplantation. Thus, distinct mechanisms downstream of TLR4 signaling mediate myelosuppression and HSC exhaustion during sepsis through unique effects of MyD88 and TRIF.
Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Prostaglandin E receptor 4 (EP4) promotes colonic tumorigenesis.
Chang J, Vacher J, Yao B, Fan X, Zhang B, Harris RC, Zhang MZ
(2015) Oncotarget 6: 33500-11
MeSH Terms: Animals, Carcinogenesis, Colorectal Neoplasms, Cyclooxygenase 2, Disease Models, Animal, Female, MAP Kinase Signaling System, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Myeloid Cells, Phosphatidylinositol 3-Kinases, Proto-Oncogene Proteins c-akt, RAW 264.7 Cells, Receptors, Prostaglandin E, EP4 Subtype, TOR Serine-Threonine Kinases
Show Abstract · Added May 5, 2017
Colorectal cancer (CRC) continues to be a major cause of morbidity and mortality. Although the factors underlying CRC development and progression are multifactorial, there is an important role for tumor-host interactions, especially interactions with myeloid cells. There is also increasing evidence that cyclooxygenase-derived prostaglandins are important mediators of CRC development and growth. Although prevention trials with either nonselective NSAIDs or COX-2 selective agents have shown promise, the gastrointestinal or cardiovascular side effects of these agents have limited their implementation. The predominant prostaglandin involved in CRC pathogenesis is PGE2. Since myeloid cells express high levels of the PGE2 receptor subtype, EP4, we selectively ablated EP4 in myeloid cells and studied adenoma formation in a mouse model of intestinal adenomatous polyposis, ApcMin/+ mice. ApcMin/+mice with selective myeloid cell deletion of EP4 had marked inhibition of both adenoma number and size, with associated decreases in mTOR and ERK activation. Either genetic or pharmacologic inhibition of EP4 receptors led to an anti-tumorigenic M1 phenotype of macrophages/dendritic cells. Therefore, PGE2-mediated EP4 signaling in myeloid cells promotes tumorigenesis, suggesting EP4 as a potentially attractive target for CRC chemoprevention or treatment.
1 Communities
0 Members
0 Resources
17 MeSH Terms
Myocardial Infarction Activates CCR2(+) Hematopoietic Stem and Progenitor Cells.
Dutta P, Sager HB, Stengel KR, Naxerova K, Courties G, Saez B, Silberstein L, Heidt T, Sebas M, Sun Y, Wojtkiewicz G, Feruglio PF, King K, Baker JN, van der Laan AM, Borodovsky A, Fitzgerald K, Hulsmans M, Hoyer F, Iwamoto Y, Vinegoni C, Brown D, Di Carli M, Libby P, Hiebert SW, Scadden DT, Swirski FK, Weissleder R, Nahrendorf M
(2015) Cell Stem Cell 16: 477-87
MeSH Terms: Animals, Cell Movement, Cells, Cultured, Hematopoietic Stem Cells, Macrophages, Mice, Inbred C57BL, Mice, Knockout, Mice, Mutant Strains, Models, Animal, Monocytes, Myeloid Cells, Myelopoiesis, Myocardial Infarction, Nuclear Proteins, RNA, Small Interfering, Receptors, CCR2, Transcription Factors, Wound Healing
Show Abstract · Added September 28, 2015
Following myocardial infarction (MI), myeloid cells derived from the hematopoietic system drive a sharp increase in systemic leukocyte levels that correlates closely with mortality. The origin of these myeloid cells, and the response of hematopoietic stem and progenitor cells (HSPCs) to MI, however, is unclear. Here, we identify a CCR2(+)CD150(+)CD48(-) LSK hematopoietic subset as the most upstream contributor to emergency myelopoiesis after ischemic organ injury. This subset has 4-fold higher proliferation rates than CCR2(-)CD150(+)CD48(-) LSK cells, displays a myeloid differentiation bias, and dominates the migratory HSPC population. We further demonstrate that the myeloid translocation gene 16 (Mtg16) regulates CCR2(+) HSPC emergence. Mtg16(-/-) mice have decreased levels of systemic monocytes and infarct-associated macrophages and display compromised tissue healing and post-MI heart failure. Together, these data provide insights into regulation of emergency hematopoiesis after ischemic injury and identify potential therapeutic targets to modulate leukocyte output after MI.
Copyright © 2015 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Regulation of alveolar procoagulant activity and permeability in direct acute lung injury by lung epithelial tissue factor.
Shaver CM, Grove BS, Putz ND, Clune JK, Lawson WE, Carnahan RH, Mackman N, Ware LB, Bastarache JA
(2015) Am J Respir Cell Mol Biol 53: 719-27
MeSH Terms: Acute Lung Injury, Animals, Blood Coagulation, Capillary Permeability, Disease Models, Animal, Epithelial Cells, Gene Expression, Hemorrhage, Lipopolysaccharides, Mice, Mice, Knockout, Myeloid Cells, Pulmonary Alveoli, Respiratory Distress Syndrome, Adult, Respiratory Mucosa, Thromboplastin
Show Abstract · Added February 12, 2016
Tissue factor (TF) initiates the extrinsic coagulation cascade in response to tissue injury, leading to local fibrin deposition. Low levels of TF in mice are associated with increased severity of acute lung injury (ALI) after intratracheal LPS administration. However, the cellular sources of the TF required for protection from LPS-induced ALI remain unknown. In the current study, transgenic mice with cell-specific deletions of TF in the lung epithelium or myeloid cells were treated with intratracheal LPS to determine the cellular sources of TF important in direct ALI. Cell-specific deletion of TF in the lung epithelium reduced total lung TF expression to 39% of wild-type (WT) levels at baseline and to 29% of WT levels after intratracheal LPS. In contrast, there was no reduction of TF with myeloid cell TF deletion. Mice lacking myeloid cell TF did not differ from WT mice in coagulation, inflammation, permeability, or hemorrhage. However, mice lacking lung epithelial TF had increased tissue injury, impaired activation of coagulation in the airspace, disrupted alveolar permeability, and increased alveolar hemorrhage after intratracheal LPS. Deletion of epithelial TF did not affect alveolar permeability in an indirect model of ALI caused by systemic LPS infusion. These studies demonstrate that the lung epithelium is the primary source of TF in the lung, contributing 60-70% of total lung TF, and that lung epithelial, but not myeloid, TF may be protective in direct ALI.
0 Communities
2 Members
0 Resources
16 MeSH Terms
TGFβ signaling in myeloid cells regulates mammary carcinoma cell invasion through fibroblast interactions.
Shaw AK, Pickup MW, Chytil A, Aakre M, Owens P, Moses HL, Novitskiy SV
(2015) PLoS One 10: e0117908
MeSH Terms: Animals, Cell Line, Tumor, Cell Movement, Female, Fibroblasts, Mammary Neoplasms, Experimental, Mice, Myeloid Cells, Neoplasm Invasiveness, Protein-Serine-Threonine Kinases, Receptor, Transforming Growth Factor-beta Type II, Receptors, Transforming Growth Factor beta, Signal Transduction, Transforming Growth Factor beta
Show Abstract · Added February 12, 2015
Metastasis is the most devastating aspect of cancer, however we know very little about the mechanisms of local invasion, the earliest step of metastasis. During tumor growth CD11b+ Gr1+ cells, known also as MDSCs, have been shown to promote tumor progression by a wide spectrum of effects that suppress the anti-tumor immune response. In addition to immunosuppression, CD11b+ Gr1+ cells promote metastasis by mechanisms that are currently unknown. CD11b+ Gr1+ cells localize near fibroblasts, which remodel the ECM and leave tracks for collective cell migration of carcinoma cells. In this study we discovered that CD11b+ Gr1+ cells promote invasion of mammary carcinoma cells by increasing fibroblast migration. This effect was directed by secreted factors derived from CD11b+ Gr1+ cells. We have identified several CD11b+ Gr1+ cell secreted proteins that activate fibroblast migration, including CXCL11, CXCL15, FGF2, IGF-I, IL1Ra, Resistin, and Shh. The combination of CXCL11 and FGF2 had the strongest effect on fibroblast migration that is associated with Akt1 and ERK1/2 phosphorylation. Analysis of subsets of CD11b+ Gr1+ cells identified that CD11b+ Ly6Chigh Ly6Glow cells increase fibroblast migration more than other myeloid cell populations. Additionally, tumor-derived CD11b+ Gr1+ cells promote fibroblast migration more than splenic CD11b+ Gr1+ cells of tumor-bearing mice. While TGFβ signaling in fibroblasts does not regulate their migration toward CD11b+ Gr1+ cells, however deletion of TGFβ receptor II on CD11b+ Gr1+ cells downregulates CXCL11, Shh, IGF1 and FGF2 resulting in reduced fibroblast migration. These studies show that TGFβ signaling in CD11b+ Gr1+ cells promotes fibroblast directed carcinoma invasion and suggests that perivascular CD11b+ Ly6Chigh Ly6Glow cells may be the stimulus for localized invasion leading to metastasis.
1 Communities
2 Members
0 Resources
14 MeSH Terms