Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 100

Publication Record

Connections

MFe adipose tissue macrophages compensate for tissue iron perturbations in mice.
Hubler MJ, Erikson KM, Kennedy AJ, Hasty AH
(2018) Am J Physiol Cell Physiol 315: C319-C329
MeSH Terms: Adipocytes, Adipose Tissue, Animals, Cell Line, Dietary Supplements, Inflammation, Iron Overload, Iron, Dietary, Macrophages, Male, Mice, Mice, Inbred C57BL, Monocytes
Show Abstract · Added March 26, 2019
Resident adipose tissue macrophages (ATMs) play multiple roles to maintain tissue homeostasis, such as removing excess free fatty acids and regulation of the extracellular matrix. The phagocytic nature and oxidative resiliency of macrophages not only allows them to function as innate immune cells but also to respond to specific tissue needs, such as iron homeostasis. MFe ATMs are a subtype of resident ATMs that we recently identified to have twice the intracellular iron content as other ATMs and elevated expression of iron-handling genes. Although studies have demonstrated that iron homeostasis is important for adipocyte health, little is known about how MFe ATMs may respond to and influence adipose tissue iron availability. Two methodologies were used to address this question: dietary iron supplementation and intraperitoneal iron injection. Upon exposure to high dietary iron, MFe ATMs accumulated excess iron, whereas the iron content of MFe ATMs and adipocytes remained unchanged. In this model of chronic iron excess, MFe ATMs exhibited increased expression of genes involved in iron storage. In the injection model, MFe ATMs incorporated high levels of iron, and adipocytes were spared iron overload. This acute model of iron overload was associated with increased numbers of MFe ATMs; 17% could be attributed to monocyte recruitment and 83% to MFe ATM incorporation into the MFe pool. The MFe ATM population maintained its low inflammatory profile and iron-cycling expression profile. These studies expand the field's understanding of ATMs and confirm that they can respond as a tissue iron sink in models of iron overload.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Loss of in Monocyte/Macrophages Suppresses Their Proliferation and Viability Reducing Atherosclerosis in LDLR Null Mice.
Babaev VR, Huang J, Ding L, Zhang Y, May JM, Linton MF
(2018) Front Immunol 9: 215
MeSH Terms: Animals, Aorta, Atherosclerosis, Cell Proliferation, Cell Survival, Diet, Western, Disease Models, Animal, Female, Humans, Macrophages, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Monocytes, Rapamycin-Insensitive Companion of mTOR Protein, Receptors, LDL
Show Abstract · Added April 10, 2018
Background - Rictor is an essential component of mammalian target of rapamycin (mTOR) complex 2 (mTORC2), a conserved serine/threonine kinase that may play a role in cell proliferation, survival and innate or adaptive immune responses. Genetic loss of inactivates mTORC2, which directly activates Akt S phosphorylation and promotes pro-survival cell signaling and proliferation.
Methods and results - To study the role of mTORC2 signaling in monocytes and macrophages, we generated mice with myeloid lineage-specific deletion (M). These M mice exhibited dramatic reductions of white blood cells, B-cells, T-cells, and monocytes but had similar levels of neutrophils compared to control flox-flox () mice. M bone marrow monocytes and peritoneal macrophages expressed reduced levels of mTORC2 signaling and decreased Akt S phosphorylation, and they displayed significantly less proliferation than control cells. In addition, blood monocytes and peritoneal macrophages isolated from M mice were significantly more sensitive to pro-apoptotic stimuli. In response to LPS, M macrophages exhibited the M1 phenotype with higher levels of pro-inflammatory gene expression and lower levels of gene expression than control cells. Further suppression of LPS-stimulated Akt signaling with a low dose of an Akt inhibitor, increased inflammatory gene expression in macrophages, but genetic inactivation of reversed this rise, indicating that mTORC1 mediates this increase of inflammatory gene expression. Next, to elucidate whether mTORC2 has an impact on atherosclerosis , female and male null mice were reconstituted with bone marrow from M or mice. After 10 weeks of the Western diet, there were no differences between the recipients of the same gender in body weight, blood glucose or plasma lipid levels. However, both female and male M →  mice developed smaller atherosclerotic lesions in the distal and proximal aorta. These lesions contained less macrophage area and more apoptosis than lesions of control →  mice. Thus, loss of and, consequently, mTORC2 significantly compromised monocyte/macrophage survival, and this markedly diminished early atherosclerosis in mice.
Conclusion - Our results demonstrate that mTORC2 is a key signaling regulator of macrophage survival and its depletion suppresses early atherosclerosis.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Discovery of human cell selective effector molecules using single cell multiplexed activity metabolomics.
Earl DC, Ferrell PB, Leelatian N, Froese JT, Reisman BJ, Irish JM, Bachmann BO
(2018) Nat Commun 9: 39
MeSH Terms: Aged, Bone Marrow, Cell Extracts, Chromatography, Liquid, DNA Damage, Female, Flow Cytometry, Humans, Leukemia, Leukemia, Myeloid, Acute, Lymphocytes, Male, Mass Spectrometry, Metabolome, Metabolomics, Monocytes, Signal Transduction, Streptomyces, Tumor Cells, Cultured, Young Adult
Show Abstract · Added January 4, 2018
Discovering bioactive metabolites within a metabolome is challenging because there is generally little foreknowledge of metabolite molecular and cell-targeting activities. Here, single-cell response profiles and primary human tissue comprise a response platform used to discover novel microbial metabolites with cell-type-selective effector properties in untargeted metabolomic inventories. Metabolites display diverse effector mechanisms, including targeting protein synthesis, cell cycle status, DNA damage repair, necrosis, apoptosis, or phosphoprotein signaling. Arrayed metabolites are tested against acute myeloid leukemia patient bone marrow and molecules that specifically targeted blast cells or nonleukemic immune cell subsets within the same tissue biopsy are revealed. Cell-targeting polyketides are identified in extracts from biosynthetically prolific bacteria, including a previously unreported leukemia blast-targeting anthracycline and a polyene macrolactam that alternates between targeting blasts or nonmalignant cells by way of light-triggered photochemical isomerization. High-resolution cell profiling with mass cytometry confirms response mechanisms and is used to validate initial observations.
3 Communities
1 Members
0 Resources
20 MeSH Terms
Proteomics show antigen presentation processes in human immune cells after AS03-H5N1 vaccination.
Galassie AC, Goll JB, Samir P, Jensen TL, Hoek KL, Howard LM, Allos TM, Niu X, Gordy LE, Creech CB, Hill H, Joyce S, Edwards KM, Link AJ
(2017) Proteomics 17:
MeSH Terms: Adjuvants, Immunologic, Antigen Presentation, B-Lymphocytes, Cells, Cultured, Humans, Influenza A Virus, H5N1 Subtype, Influenza Vaccines, Influenza, Human, Killer Cells, Natural, Monocytes, Neutrophils, Protein Interaction Maps, Proteome, Proteomics, T-Lymphocytes
Show Abstract · Added August 15, 2017
Adjuvants enhance immunity elicited by vaccines through mechanisms that are poorly understood. Using a systems biology approach, we investigated temporal protein expression changes in five primary human immune cell populations: neutrophils, monocytes, natural killer cells, T cells, and B cells after administration of either an Adjuvant System 03 adjuvanted or unadjuvanted split-virus H5N1 influenza vaccine. Monocytes demonstrated the strongest differential signal between vaccine groups. On day 3 post-vaccination, several antigen presentation-related pathways, including MHC class I-mediated antigen processing and presentation, were enriched in monocytes and neutrophils and expression of HLA class I proteins was increased in the Adjuvant System 03 group. We identified several protein families whose proteomic responses predicted seroprotective antibody responses (>1:40 hemagglutination inhibition titer), including inflammation and oxidative stress proteins at day 1 as well as immunoproteasome subunit (PSME1 and PSME2) and HLA class I proteins at day 3 in monocytes. While comparison between temporal proteomic and transcriptomic results showed little overlap overall, enrichment of the MHC class I antigen processing and presentation pathway in monocytes and neutrophils was confirmed by both approaches.
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
1 Communities
0 Members
0 Resources
15 MeSH Terms
Mass cytometry deep phenotyping of human mononuclear phagocytes and myeloid-derived suppressor cells from human blood and bone marrow.
Roussel M, Ferrell PB, Greenplate AR, Lhomme F, Le Gallou S, Diggins KE, Johnson DB, Irish JM
(2017) J Leukoc Biol 102: 437-447
MeSH Terms: Dendritic Cells, Flow Cytometry, Humans, Lymphocyte Culture Test, Mixed, Macrophages, Monocytes, Myeloid-Derived Suppressor Cells, Phagocytes, Phenotype
Show Abstract · Added April 13, 2017
The monocyte phagocyte system (MPS) includes numerous monocyte, macrophage, and dendritic cell (DC) populations that are heterogeneous, both phenotypically and functionally. In this study, we sought to characterize those diverse MPS phenotypes with mass cytometry (CyTOF). To identify a deep phenotype of monocytes, macrophages, and DCs, a panel was designed to measure 38 identity, activation, and polarization markers, including CD14, CD16, HLA-DR, CD163, CD206, CD33, CD36, CD32, CD64, CD13, CD11b, CD11c, CD86, and CD274. MPS diversity was characterized for 1) circulating monocytes from healthy donors, 2) monocyte-derived macrophages further polarized in vitro (i.e., M-CSF, GM-CSF, IL-4, IL-10, IFN-γ, or LPS long-term stimulations), 3) monocyte-derived DCs, and 4) myeloid-derived suppressor cells (MDSCs), generated in vitro from bone marrow and/or peripheral blood. Known monocyte subsets were detected in peripheral blood to validate the panel and analysis pipeline. Then, using various culture conditions and stimuli before CyTOF analysis, we constructed a multidimensional framework for the MPS compartment, which was registered against historical M1 or M2 macrophages, monocyte subsets, and DCs. Notably, MDSCs generated in vitro from bone marrow expressed more S100A9 than when generated from peripheral blood. Finally, to test the approach in vivo, peripheral blood from patients with melanoma ( = 5) was characterized and observed to be enriched for MDSCs with a phenotype of CD14HLA-DRS100A9 (3% of PBMCs in healthy donors, 15.5% in patients with melanoma, < 0.02). In summary, mass cytometry comprehensively characterized phenotypes of human monocyte, MDSC, macrophage, and DC subpopulations in both in vitro models and patients.
© Society for Leukocyte Biology.
3 Communities
1 Members
0 Resources
9 MeSH Terms
De novo RNA sequence assembly during in vivo inflammatory stress reveals hundreds of unannotated lincRNAs in human blood CD14 monocytes and in adipose tissue.
Xue C, Zhang X, Zhang H, Ferguson JF, Wang Y, Hinkle CC, Li M, Reilly MP
(2017) Physiol Genomics 49: 287-305
MeSH Terms: Adipose Tissue, Adolescent, Adult, DNA Transposable Elements, Endotoxemia, Gene Expression Profiling, Genome-Wide Association Study, Humans, Inflammation, Lipopolysaccharide Receptors, Male, Middle Aged, Monocytes, Polymorphism, Single Nucleotide, RNA, Long Noncoding, Young Adult
Show Abstract · Added June 6, 2017
Long intergenic noncoding RNAs (lincRNAs) have emerged as key regulators of cellular functions and physiology. Yet functional lincRNAs often have low, context-specific and tissue-specific expression. We hypothesized that many human monocyte and adipose lincRNAs would be absent in current public annotations due to lincRNA tissue specificity, modest sequencing depth in public data, limitations of transcriptome assembly algorithms, and lack of dynamic physiological contexts. Deep RNA sequencing (RNA-Seq) was performed in peripheral blood CD14 monocytes (monocytes; average ~247 million reads per sample) and adipose tissue (average ~378 million reads per sample) collected before and after human experimental endotoxemia, an in vivo inflammatory stress, to identify tissue-specific and clinically relevant lincRNAs. Using a stringent filtering pipeline, we identified 109 unannotated lincRNAs in monocytes and 270 unannotated lincRNAs in adipose. Most unannotated lincRNAs are not conserved in rodents and are tissue specific, while many have features of regulated expression and are enriched in transposable elements. Specific subsets have enhancer RNA characteristics or are expressed only during inflammatory stress. A subset of unannotated lincRNAs was validated and replicated for their presence and inflammatory induction in independent human samples and for their monocyte and adipocyte origins. Through interrogation of public genome-wide association data, we also found evidence of specific disease association for selective unannotated lincRNAs. Our findings highlight the critical need to perform deep RNA-Seq in a cell-, tissue-, and context-specific manner to annotate the full repertoire of human lincRNAs for a complete understanding of lincRNA roles in dynamic cell functions and in human disease.
Copyright © 2017 the American Physiological Society.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Bilirubin Prevents Atherosclerotic Lesion Formation in Low-Density Lipoprotein Receptor-Deficient Mice by Inhibiting Endothelial VCAM-1 and ICAM-1 Signaling.
Vogel ME, Idelman G, Konaniah ES, Zucker SD
(2017) J Am Heart Assoc 6:
MeSH Terms: Animals, Antioxidants, Aorta, Bilirubin, Cell Movement, Collagen, Diet, Western, Intercellular Adhesion Molecule-1, Lipid Metabolism, Lymphocytes, Male, Mice, Mice, Knockout, Monocytes, Plaque, Atherosclerotic, Receptors, LDL, Signal Transduction, Vascular Cell Adhesion Molecule-1
Show Abstract · Added April 27, 2017
BACKGROUND - Numerous epidemiological studies support an inverse association between serum bilirubin levels and the incidence of cardiovascular disease; however, the mechanism(s) by which bilirubin may protect against atherosclerosis is undefined. The goals of the present investigations were to assess the ability of bilirubin to prevent atherosclerotic plaque formation in low-density lipoprotein receptor-deficient ( ) mice and elucidate the molecular processes underlying this effect.
METHODS AND RESULTS - Bilirubin, at physiological concentrations (≤20 μmol/L), dose-dependently inhibits THP-1 monocyte migration across tumor necrosis factor α-activated human umbilical vein endothelial cell monolayers without altering leukocyte binding or cytokine production. A potent antioxidant, bilirubin effectively blocks the generation of cellular reactive oxygen species induced by the cross-linking of endothelial vascular cell adhesion molecule 1 (VCAM-1) or intercellular adhesion molecule 1 (ICAM-1). These findings were validated by treating cells with blocking antibodies or with specific inhibitors of VCAM-1 and ICAM-1 signaling. When administered to mice on a Western diet, bilirubin (30 mg/kg intraperitoneally) prevents atherosclerotic plaque formation, but does not alter circulating cholesterol or chemokine levels. Aortic roots from bilirubin-treated animals exhibit reduced lipid and collagen deposition, decreased infiltration of monocytes and lymphocytes, fewer smooth muscle cells, and diminished levels of chlorotyrosine and nitrotyrosine, without changes in VCAM-1 or ICAM-1 expression.
CONCLUSIONS - Bilirubin suppresses atherosclerotic plaque formation in mice by disrupting endothelial VCAM-1- and ICAM-1-mediated leukocyte migration through the scavenging of reactive oxygen species signaling intermediaries. These findings suggest a potential mechanism for the apparent cardioprotective effects of bilirubin.
© 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Expression of Calgranulin Genes S100A8, S100A9 and S100A12 Is Modulated by n-3 PUFA during Inflammation in Adipose Tissue and Mononuclear Cells.
Shah RD, Xue C, Zhang H, Tuteja S, Li M, Reilly MP, Ferguson JF
(2017) PLoS One 12: e0169614
MeSH Terms: Adipose Tissue, Adult, Antioxidants, Buttocks, Calgranulin A, Calgranulin B, Case-Control Studies, Docosahexaenoic Acids, Eicosapentaenoic Acid, Endotoxemia, Female, Gene Expression Regulation, Healthy Volunteers, Humans, Lipopolysaccharides, Male, Monocytes, S100A12 Protein, Signal Transduction
Show Abstract · Added June 6, 2017
Calgranulin genes (S100A8, S100A9 and S100A12) play key immune response roles in inflammatory disorders, including cardiovascular disease. Long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) may have systemic and adipose tissue-specific anti-inflammatory and cardio-protective action. Interactions between calgranulins and the unsaturated fatty acid arachidonic acid (AA) have been reported, yet little is known about the relationship between calgranulins and the LC n-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We explored tissue-specific action of calgranulins in the setting of evoked endotoxemia and n-3 PUFA supplementation. Expression of calgranulins in adipose tissue in vivo was assessed by RNA sequencing (RNASeq) before and after n-3 PUFA supplementation and evoked endotoxemia in the fenofibrate and omega-3 fatty acid modulation of endotoxemia (FFAME) Study. Subjects received n-3 PUFA (n = 8; 3600mg/day EPA/DHA) or matched placebo (n = 6) for 6-8 weeks, before completing an endotoxin challenge (LPS 0.6 ng/kg). Calgranulin genes were up-regulated post-LPS, with greater increase in n-3 PUFA (S100A8 15-fold, p = 0.003; S100A9 7-fold, p = 0.003; S100A12 28-fold, p = 0.01) compared to placebo (S100A8 2-fold, p = 0.01; S100A9 1.4-fold, p = 0.4; S100A12 5-fold, p = 0.06). In an independent evoked endotoxemia study, calgranulin gene expression correlated with the systemic inflammatory response. Through in vivo and in vitro interrogation we highlight differential responses in adipocytes and mononuclear cells during inflammation, with n-3 PUFA leading to increased calgranulin expression in adipose, but decreased expression in circulating cells. In conclusion, we present a novel relationship between n-3 PUFA anti-inflammatory action in vivo and cell-specific modulation of calgranulin expression during innate immune activation.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Cell-Based Systems Biology Analysis of Human AS03-Adjuvanted H5N1 Avian Influenza Vaccine Responses: A Phase I Randomized Controlled Trial.
Howard LM, Hoek KL, Goll JB, Samir P, Galassie A, Allos TM, Niu X, Gordy LE, Creech CB, Prasad N, Jensen TL, Hill H, Levy SE, Joyce S, Link AJ, Edwards KM
(2017) PLoS One 12: e0167488
MeSH Terms: Adjuvants, Immunologic, Adolescent, Adult, Antibodies, Viral, Antibody Formation, Antigen Presentation, Chemokine CXCL10, Dendritic Cells, Double-Blind Method, Female, Hemagglutination Inhibition Tests, Humans, Influenza A Virus, H5N1 Subtype, Influenza Vaccines, Influenza, Human, Interleukin-6, Killer Cells, Natural, Male, Middle Aged, Monocytes, Neutrophils, Systems Biology, Vaccination, Young Adult
Show Abstract · Added May 3, 2017
BACKGROUND - Vaccine development for influenza A/H5N1 is an important public health priority, but H5N1 vaccines are less immunogenic than seasonal influenza vaccines. Adjuvant System 03 (AS03) markedly enhances immune responses to H5N1 vaccine antigens, but the underlying molecular mechanisms are incompletely understood.
OBJECTIVE AND METHODS - We compared the safety (primary endpoint), immunogenicity (secondary), gene expression (tertiary) and cytokine responses (exploratory) between AS03-adjuvanted and unadjuvanted inactivated split-virus H5N1 influenza vaccines. In a double-blinded clinical trial, we randomized twenty adults aged 18-49 to receive two doses of either AS03-adjuvanted (n = 10) or unadjuvanted (n = 10) H5N1 vaccine 28 days apart. We used a systems biology approach to characterize and correlate changes in serum cytokines, antibody titers, and gene expression levels in six immune cell types at 1, 3, 7, and 28 days after the first vaccination.
RESULTS - Both vaccines were well-tolerated. Nine of 10 subjects in the adjuvanted group and 0/10 in the unadjuvanted group exhibited seroprotection (hemagglutination inhibition antibody titer > 1:40) at day 56. Within 24 hours of AS03-adjuvanted vaccination, increased serum levels of IL-6 and IP-10 were noted. Interferon signaling and antigen processing and presentation-related gene responses were induced in dendritic cells, monocytes, and neutrophils. Upregulation of MHC class II antigen presentation-related genes was seen in neutrophils. Three days after AS03-adjuvanted vaccine, upregulation of genes involved in cell cycle and division was detected in NK cells and correlated with serum levels of IP-10. Early upregulation of interferon signaling-related genes was also found to predict seroprotection 56 days after first vaccination.
CONCLUSIONS - Using this cell-based systems approach, novel mechanisms of action for AS03-adjuvanted pandemic influenza vaccination were observed.
TRIAL REGISTRATION - ClinicalTrials.gov NCT01573312.
0 Communities
1 Members
0 Resources
24 MeSH Terms
Lipid profiling of polarized human monocyte-derived macrophages.
Montenegro-Burke JR, Sutton JA, Rogers LM, Milne GL, McLean JA, Aronoff DM
(2016) Prostaglandins Other Lipid Mediat 127: 1-8
MeSH Terms: Adolescent, Adult, Fatty Acids, Humans, Lipid Metabolism, Macrophages, Membrane Lipids, Middle Aged, Monocytes, Young Adult
Show Abstract · Added June 2, 2017
The highly orchestrated transcriptional and metabolic reprogramming during activation drastically transforms the main functions and physiology of human macrophages across the polarization spectrum. Lipids, for example, can modify protein function by acting remotely as signaling molecules but also locally by altering the physical properties of cellular membranes. These changes play key roles in the functions of highly plastic immune cells due to their involvement in inflammation, immune responses, phagocytosis and wound healing processes. We report an analysis of major membrane lipids of distinct phenotypes of resting (M0), classically activated (M1), alternatively activated (M2a) and deactivated (M2c) human monocyte derived macrophages from different donors. Samples were subjected to supercritical fluid chromatography-ion mobility-mass spectrometry analysis, which allowed separations based on lipid class, facilitating the profiling of their fatty acid composition. Different levels of arachidonic acid mobilization as well as other fatty acid changes were observed for different lipid classes in the distinct polarization phenotypes, suggesting the activation of highly orchestrated and specific enzymatic processes in the biosynthesis of lipid signaling molecules and cell membrane remodeling. Thromboxane A2 production appeared to be a specific marker of M1 polarization. These alterations to the global composition of lipid bi-layer membranes in the cell provide a potential methodology for the definition and determination of cellular and tissue activation states.
Copyright © 2016 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
10 MeSH Terms