Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 135

Publication Record

Connections

COVID-19 and immune checkpoint inhibitors: initial considerations.
Sullivan RJ, Johnson DB, Rini BI, Neilan TG, Lovly CM, Moslehi JJ, Reynolds KL
(2020) J Immunother Cancer 8:
MeSH Terms: Antineoplastic Agents, Immunological, Coronavirus Infections, Humans, Molecular Targeted Therapy, Neoplasms, Pandemics, Pneumonia, Viral, Programmed Cell Death 1 Receptor
Show Abstract · Added May 29, 2020
COVID-19 infections are characterized by inflammation of the lungs and other organs that ranges from mild and asymptomatic to fulminant and fatal. Patients who are immunocompromised and those with cardiopulmonary comorbidities appear to be particularly afflicted by this illness. During pandemic conditions, many aspects of cancer care have been impacted. One important clinical question is how to manage patients who need anticancer therapy, including immune checkpoint inhibitors (ICIs) during these conditions. Herein, we consider diagnostic and therapeutic implications of using ICI during this unprecedented period of COVID-19 infections. In particular, we consider the impact of ICI on COVID-19 severity, decisions surrounding continuing or interrupting therapy, diagnostic measures in patients with symptoms or manifestations potentially consistent with either COVID-19 or ICI toxicity, and resumption of therapy in infected patients. While more robust data are needed to guide clinicians on management of patients with cancer who may be affected by COVID-19, we hope this commentary provides useful insights for the clinical community.
© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Mechanisms and clinical course of cardiovascular toxicity of cancer treatment I. Oncology.
Yeh ETH, Ewer MS, Moslehi J, Dlugosz-Danecka M, Banchs J, Chang HM, Minotti G
(2019) Semin Oncol 46: 397-402
MeSH Terms: Antineoplastic Agents, Antineoplastic Combined Chemotherapy Protocols, Cardiotoxicity, Cardiovascular Diseases, DNA Topoisomerases, Type II, Humans, Medical Oncology, Molecular Targeted Therapy, Neoplasms, Poly-ADP-Ribose Binding Proteins
Show Abstract · Added January 15, 2020
The opening session of Second International Colloquium on Cardio-Oncology addressed two areas of vital interest. The first reviewed new thoughts related to established agents. While anthracycline cardiotoxicity has been studied and reviewed extensively, ongoing research attempting to understand why it appears the mechanism(s) of toxicity differs from that of oncologic efficacy continue to evoke comment and intriguing speculation. Better understanding of the role of β-topoisomerase II in toxicity has advanced our understanding of the cascade of events that lead to heart failure. Additionally, the cardioprotective role of dexrazoxane fits well with our new understanding of how β-topoisomerase II works. Beyond the anthracyclines, new insight is providing us insight to better understand the impact on cardiac function seen with other agents including those targeting HER2 and several tyrosine-kinase inhibitors. Unlike the anthracyclines, these agents affect cardiac function in ways that are less direct, and therefore have different characteristics and should be thought of in alternate ways. This new knowledge regarding established agents furthers our understanding of the spectrum of cardiotoxicity and cardiac dysfunction in the cancer patient. The session also addressed cardiovascular toxicities of newer and established agents beyond myocardial dysfunction including effects on the vasculature. These agents cause changes that may be temporary or permanent, and that range from subclinical to life-threatening. The session ended with a discussion of the cardiac effects of immune checkpoint inhibitors. These agents can cause rare and sometimes fatal cardiac inflammation, for which long-term follow up may be required.
Copyright © 2019 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Unmet need in rheumatology: reports from the Targeted Therapies meeting 2019.
Winthrop KL, Weinblatt ME, Bathon J, Burmester GR, Mease PJ, Crofford L, Bykerk V, Dougados M, Rosenbaum JT, Mariette X, Sieper J, Melchers F, Cronstein BN, Breedveld FC, Kalden J, Smolen JS, Furst D
(2020) Ann Rheum Dis 79: 88-93
MeSH Terms: Arthritis, Psoriatic, Arthritis, Rheumatoid, Biomedical Research, Central Nervous System Sensitization, Clinical Trials as Topic, Congresses as Topic, Humans, Lupus Erythematosus, Systemic, Molecular Targeted Therapy, Needs Assessment, Research, Research Design, Rheumatic Diseases, Rheumatology, Spondylitis, Ankylosing
Show Abstract · Added March 25, 2020
OBJECTIVES - To detail the greatest areas of unmet scientific and clinical needs in rheumatology.
METHODS - The 21st annual international Advances in Targeted Therapies meeting brought together more than 100 leading basic scientists and clinical researchers in rheumatology, immunology, epidemiology, molecular biology and other specialties. During the meeting, breakout sessions were convened, consisting of 5 disease-specific groups with 20-30 experts assigned to each group based on expertise. Specific groups included: rheumatoid arthritis, psoriatic arthritis, axial spondyloarthritis, systemic lupus erythematosus and other systemic autoimmune rheumatic diseases. In each group, experts were asked to identify unmet clinical and translational research needs in general and then to prioritise and detail the most important specific needs within each disease area.
RESULTS - Overarching themes across all disease states included the need to innovate clinical trial design with emphasis on studying patients with refractory disease, the development of trials that take into account disease endotypes and patients with overlapping inflammatory diseases, the need to better understand the prevalence and incidence of inflammatory diseases in developing regions of the world and ultimately to develop therapies that can cure inflammatory autoimmune diseases.
CONCLUSIONS - Unmet needs for new therapies and trial designs, particularly for those with treatment refractory disease, remain a top priority in rheumatology.
© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Prospective Study of Cardiac Events During Proteasome Inhibitor Therapy for Relapsed Multiple Myeloma.
Cornell RF, Ky B, Weiss BM, Dahm CN, Gupta DK, Du L, Carver JR, Cohen AD, Engelhardt BG, Garfall AL, Goodman SA, Harrell SL, Kassim AA, Jadhav T, Jagasia M, Moslehi J, O'Quinn R, Savona MR, Slosky D, Smith A, Stadtmauer EA, Vogl DT, Waxman A, Lenihan D
(2019) J Clin Oncol 37: 1946-1955
MeSH Terms: Adult, Aged, Aged, 80 and over, Bortezomib, Cardiovascular Diseases, Disease-Free Survival, Electrocardiography, Female, Heart Diseases, Humans, Kaplan-Meier Estimate, Male, Middle Aged, Molecular Targeted Therapy, Multiple Myeloma, Natriuretic Peptide, Brain, Neoplasm Recurrence, Local, Oligopeptides, Prospective Studies, Proteasome Inhibitors, Risk Factors, Time-to-Treatment, Treatment Outcome, Troponin I, Troponin T
Show Abstract · Added November 12, 2019
PURPOSE - Cardiovascular adverse events (CVAEs) can occur during proteasome inhibitor (PI) therapy. We conducted a prospective, observational, multi-institutional study to define risk factors and outcomes in patients with multiple myeloma (MM) receiving PIs.
PATIENTS AND METHODS - Patients with relapsed MM initiating carfilzomib- or bortezomib-based therapy underwent baseline assessments and repeated assessments at regular intervals over 6 months, including cardiac biomarkers (troponin I or T, brain natriuretic peptide [BNP], and N-terminal proBNP), ECG, and echocardiography. Monitoring occurred over 18 months for development of CVAEs.
RESULTS - Of 95 patients enrolled, 65 received carfilzomib and 30 received bortezomib, with median 25 months of follow-up. Sixty-four CVAEs occurred, with 55% grade 3 or greater in severity. CVAEs occurred in 51% of patients treated with carfilzomib and 17% of those treated with bortezomib ( = .002). Median time to first CVAE from treatment start was 31 days, and 86% occurred within the first 3 months. Patients receiving carfilzomib-based therapy with a baseline elevated BNP level higher than 100 pg/mL or N-terminal proBNP level higher than 125 pg/mL had increased risk for CVAE (odds ratio, 10.8; < .001). Elevated natriuretic peptides occurring mid-first cycle of treatment with carfilzomib were associated with a substantially higher risk of CVAEs (odds ratio, 36.0; < .001). Patients who experienced a CVAE had inferior progression-free survival (log-rank = .01) and overall survival (log-rank < .001). PI therapy was safely resumed in 89% of patients, although 41% required chemotherapy modifications.
CONCLUSION - CVAEs are common during PI therapy for relapsed MM, especially with carfilzomib, particularly within the first 3 months of therapy. CVAEs were associated with worse overall outcomes, but usually, discontinuation of therapy was not required. Natriuretic peptides were highly predictive of CVAEs; however, validation of this finding is necessary before uniform incorporation into the routine management of patients receiving carfilzomib.
0 Communities
1 Members
0 Resources
25 MeSH Terms
Chemokines Modulate Immune Surveillance in Tumorigenesis, Metastasis, and Response to Immunotherapy.
Vilgelm AE, Richmond A
(2019) Front Immunol 10: 333
MeSH Terms: Animals, Antineoplastic Agents, Immunological, Biomarkers, Carcinogenesis, Chemokines, Disease Progression, Humans, Immunologic Surveillance, Immunomodulation, Immunotherapy, Molecular Targeted Therapy, Neoplasm Metastasis, Neoplasm Staging, Neoplasms, Prognosis, Receptors, Chemokine, Treatment Outcome
Show Abstract · Added March 26, 2019
Chemokines are small secreted proteins that orchestrate migration and positioning of immune cells within the tissues. Chemokines are essential for the function of the immune system. Accumulating evidence suggest that chemokines play important roles in tumor microenvironment. In this review we discuss an association of chemokine expression and activity within the tumor microenvironment with cancer outcome. We summarize regulation of immune cell recruitment into the tumor by chemokine-chemokine receptor interactions and describe evidence implicating chemokines in promotion of the "inflamed" immune-cell enriched tumor microenvironment. We review both tumor-promoting function of chemokines, such as regulation of tumor metastasis, and beneficial chemokine roles, including stimulation of anti-tumor immunity and response to immunotherapy. Finally, we discuss the therapeutic strategies target tumor-promoting chemokines or induce/deliver beneficial chemokines within the tumor focusing on pre-clinical studies and clinical trials going forward. The goal of this review is to provide insight into comprehensive role of chemokines and their receptors in tumor pathobiology and treatment.
0 Communities
2 Members
0 Resources
17 MeSH Terms
Response to Anti-PD-1 in Uveal Melanoma Without High-Volume Liver Metastasis.
Johnson DB, Bao R, Ancell KK, Daniels AB, Wallace D, Sosman JA, Luke JJ
(2019) J Natl Compr Canc Netw 17: 114-117
MeSH Terms: Antineoplastic Agents, Immunological, Computational Biology, Gene Expression Profiling, Humans, Liver Neoplasms, Melanoma, Molecular Targeted Therapy, Neoplasm Staging, Prognosis, Programmed Cell Death 1 Receptor, Treatment Outcome, Uveal Neoplasms
Show Abstract · Added March 30, 2020
Uveal melanoma (UM) is an uncommon melanoma subtype with poor prognosis. Agents that have transformed the management of cutaneous melanoma have made minimal inroads in UM. We conducted a single-arm phase II study of pembrolizumab in patients with metastatic UM and performed bioinformatics analyses of publicly available datasets to characterize the activity of anti-PD-1 in this setting and to understand the mutational and immunologic profile of this disease. A total of 5 patients received pembrolizumab in this study. Median overall survival was not reached, and median progression-free survival was 11.0 months. One patient experienced a complete response after one dose and 2 others experienced prolonged stable disease (20% response rate, 60% clinical benefit rate); 2 additional patients had rapidly progressing disease. Notably, the patients who benefited had either no liver metastases or small-volume disease, whereas patients with rapidly progressing disease had bulky liver involvement. We performed a bioinformatics analysis of The Cancer Genome Atlas for UM and confirmed a low mutation burden and low rates of T-cell inflammation. Note that the lack of T-cell inflammation strongly correlated with pathway overexpression. Anti-PD-1-based therapy may cause clinical benefit in metastatic UM, seemingly more often in patients without bulky liver metastases. Lack of mutation burden and T-cell infiltration and overexpression may be factors limiting therapeutic responses. NCT02359851.
Copyright © 2019 by the National Comprehensive Cancer Network.
0 Communities
1 Members
0 Resources
12 MeSH Terms
A current understanding of drug-induced QT prolongation and its implications for anticancer therapy.
Roden DM
(2019) Cardiovasc Res 115: 895-903
MeSH Terms: Action Potentials, Animals, Antineoplastic Agents, Genetic Predisposition to Disease, Heart Conduction System, Heart Rate, Humans, Long QT Syndrome, Membrane Transport Proteins, Molecular Targeted Therapy, Prognosis, Risk Assessment, Risk Factors
Show Abstract · Added March 24, 2020
The QT interval, a global index of ventricular repolarization, varies among individuals and is influenced by diverse physiologic and pathophysiologic stimuli such as gender, age, heart rate, electrolyte concentrations, concomitant cardiac disease, and other diseases such as diabetes. Many drugs produce a small but reproducible effect on QT interval but in rare instances this is exaggerated and marked QT prolongation can provoke the polymorphic ventricular tachycardia 'torsades de pointes', which can cause syncope or sudden cardiac death. The generally accepted common mechanism whereby drugs prolong QT is block of a key repolarizing potassium current in heart, IKr, generated by expression of KCNH2, also known as HERG. Thus, evaluation of the potential that a new drug entity may cause torsades de pointes has relied on exposure of normal volunteers or patients to drug at usual and high concentrations, and on assessment of IKr block in vitro. More recent work, focusing on anticancer drugs with QT prolonging liability, is defining new pathways whereby drugs can prolong QT. Notably, the in vitro effects of some tyrosine kinase inhibitors to prolong cardiac action potentials (the cellular correlate of QT) can be rescued by intracellular phosphatidylinositol 3,4,5-trisphosphate, the downstream effector of phosphoinositide 3-kinase. This finding supports a role for inhibition of this enzyme, either directly or by inhibition of upstream kinases, to prolong QT through mechanisms that are being worked out, but include enhanced inward 'late' sodium current during the plateau of the action potential. The definition of non-IKr-dependent pathways to QT prolongation will be important for assessing risk, not only with anticancer therapies but also with other QT prolonging drugs and for generating a refined understanding how variable activity of intracellular signalling systems can modulate QT and associated arrhythmia risk.
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2019. For permissions, please email: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
13 MeSH Terms
VHL substrate transcription factor ZHX2 as an oncogenic driver in clear cell renal cell carcinoma.
Zhang J, Wu T, Simon J, Takada M, Saito R, Fan C, Liu XD, Jonasch E, Xie L, Chen X, Yao X, Teh BT, Tan P, Zheng X, Li M, Lawrence C, Fan J, Geng J, Liu X, Hu L, Wang J, Liao C, Hong K, Zurlo G, Parker JS, Auman JT, Perou CM, Rathmell WK, Kim WY, Kirschner MW, Kaelin WG, Baldwin AS, Zhang Q
(2018) Science 361: 290-295
MeSH Terms: Animals, Carcinoma, Renal Cell, Chromatin Immunoprecipitation, Female, Gene Expression Regulation, Neoplastic, Homeodomain Proteins, Humans, Hydroxylation, Kidney Neoplasms, Mice, Mice, SCID, Molecular Targeted Therapy, Mutation, NF-kappa B, Oncogenes, Substrate Specificity, Transcription Factors, Von Hippel-Lindau Tumor Suppressor Protein
Show Abstract · Added October 30, 2019
Inactivation of the von Hippel-Lindau (VHL) E3 ubiquitin ligase protein is a hallmark of clear cell renal cell carcinoma (ccRCC). Identifying how pathways affected by VHL loss contribute to ccRCC remains challenging. We used a genome-wide in vitro expression strategy to identify proteins that bind VHL when hydroxylated. Zinc fingers and homeoboxes 2 (ZHX2) was found as a VHL target, and its hydroxylation allowed VHL to regulate its protein stability. Tumor cells from ccRCC patients with loss-of-function mutations usually had increased abundance and nuclear localization of ZHX2. Functionally, depletion of ZHX2 inhibited VHL-deficient ccRCC cell growth in vitro and in vivo. Mechanistically, integrated chromatin immunoprecipitation sequencing and microarray analysis showed that ZHX2 promoted nuclear factor κB activation. These studies reveal ZHX2 as a potential therapeutic target for ccRCC.
Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
1 Members
0 Resources
MeSH Terms
In Silico Pharmacoepidemiologic Evaluation of Drug-Induced Cardiovascular Complications Using Combined Classifiers.
Cai C, Fang J, Guo P, Wang Q, Hong H, Moslehi J, Cheng F
(2018) J Chem Inf Model 58: 943-956
MeSH Terms: Antineoplastic Agents, Cardiovascular System, Computational Biology, Computer Simulation, Drug Discovery, Drug-Related Side Effects and Adverse Reactions, Humans, Molecular Targeted Therapy, Myocytes, Cardiac, Pluripotent Stem Cells, Product Surveillance, Postmarketing, Safety
Show Abstract · Added October 1, 2018
Drug-induced cardiovascular complications are the most common adverse drug events and account for the withdrawal or severe restrictions on the use of multitudinous postmarketed drugs. In this study, we developed new in silico models for systematic identification of drug-induced cardiovascular complications in drug discovery and postmarketing surveillance. Specifically, we collected drug-induced cardiovascular complications covering the five most common types of cardiovascular outcomes (hypertension, heart block, arrhythmia, cardiac failure, and myocardial infarction) from four publicly available data resources: Comparative Toxicogenomics Database, SIDER, Offsides, and MetaADEDB. Using these databases, we developed a combined classifier framework through integration of five machine-learning algorithms: logistic regression, random forest, k-nearest neighbors, support vector machine, and neural network. The totality of models included 180 single classifiers with area under receiver operating characteristic curves (AUC) ranging from 0.647 to 0.809 on 5-fold cross-validations. To develop the combined classifiers, we then utilized a neural network algorithm to integrate the best four single classifiers for each cardiovascular outcome. The combined classifiers had higher performance with an AUC range from 0.784 to 0.842 compared to single classifiers. Furthermore, we validated our predicted cardiovascular complications for 63 anticancer agents using experimental data from clinical studies, human pluripotent stem cell-derived cardiomyocyte assays, and literature. The success rate of our combined classifiers reached 87%. In conclusion, this study presents powerful in silico tools for systematic risk assessment of drug-induced cardiovascular complications. This tool is relevant not only in early stages of drug discovery but also throughout the life of a drug including clinical trials and postmarketing surveillance.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Genome-wide and candidate gene approaches of clopidogrel efficacy using pharmacodynamic and clinical end points-Rationale and design of the International Clopidogrel Pharmacogenomics Consortium (ICPC).
Bergmeijer TO, Reny JL, Pakyz RE, Gong L, Lewis JP, Kim EY, Aradi D, Fernandez-Cadenas I, Horenstein RB, Lee MTM, Whaley RM, Montaner J, Gensini GF, Cleator JH, Chang K, Holmvang L, Hochholzer W, Roden DM, Winter S, Altman RB, Alexopoulos D, Kim HS, Déry JP, Gawaz M, Bliden K, Valgimigli M, Marcucci R, Campo G, Schaeffeler E, Dridi NP, Wen MS, Shin JG, Simon T, Fontana P, Giusti B, Geisler T, Kubo M, Trenk D, Siller-Matula JM, Ten Berg JM, Gurbel PA, Hulot JS, Mitchell BD, Schwab M, Ritchie MD, Klein TE, Shuldiner AR, ICPC Investigators
(2018) Am Heart J 198: 152-159
MeSH Terms: Acute Coronary Syndrome, Aged, Clopidogrel, Female, Genetic Association Studies, Genome-Wide Association Study, Humans, Internationality, Male, Middle Aged, Molecular Targeted Therapy, Pharmacogenetics, Prognosis, Receptors, Purinergic P2Y12, Risk Assessment, Survival Rate, Treatment Outcome
Show Abstract · Added March 24, 2020
RATIONALE - The P2Y receptor inhibitor clopidogrel is widely used in patients with acute coronary syndrome, percutaneous coronary intervention, or ischemic stroke. Platelet inhibition by clopidogrel shows wide interpatient variability, and high on-treatment platelet reactivity is a risk factor for atherothrombotic events, particularly in high-risk populations. CYP2C19 polymorphism plays an important role in this variability, but heritability estimates suggest that additional genetic variants remain unidentified. The aim of the International Clopidogrel Pharmacogenomics Consortium (ICPC) is to identify genetic determinants of clopidogrel pharmacodynamics and clinical response.
STUDY DESIGN - Based on the data published on www.clinicaltrials.gov, clopidogrel intervention studies containing genetic and platelet function data were identified for participation. Lead investigators were invited to share DNA samples, platelet function test results, patient characteristics, and cardiovascular outcomes to perform candidate gene and genome-wide studies.
RESULTS - In total, 17 study sites from 13 countries participate in the ICPC, contributing individual patient data from 8,829 patients. Available adenosine diphosphate-stimulated platelet function tests included vasodilator-stimulated phosphoprotein assay, light transmittance aggregometry, and the VerifyNow P2Y assay. A proof-of-principle analysis based on genotype data provided by each group showed a strong and consistent association between CYP2C19*2 and platelet reactivity (P value=5.1 × 10).
CONCLUSION - The ICPC aims to identify new loci influencing clopidogrel efficacy by using state-of-the-art genetic approaches in a large cohort of clopidogrel-treated patients to better understand the genetic basis of on-treatment response variability.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms