Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 488

Publication Record

Connections

SIRT2 knockout exacerbates insulin resistance in high fat-fed mice.
Lantier L, Williams AS, Hughey CC, Bracy DP, James FD, Ansari MA, Gius D, Wasserman DH
(2018) PLoS One 13: e0208634
MeSH Terms: Acetylation, Animals, Diet, High-Fat, Energy Metabolism, Insulin, Insulin Resistance, Liver, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Mitochondria, Muscle, Skeletal, Phosphorylation, Proto-Oncogene Proteins c-akt, Sirtuin 2
Show Abstract · Added January 8, 2019
The NAD+-dependent deacetylase SIRT2 is unique amongst sirtuins as it is effective in the cytosol, as well as the mitochondria. Defining the role of cytosolic acetylation state in specific tissues is difficult since even physiological effects at the whole body level are unknown. We hypothesized that genetic SIRT2 knockout (KO) would lead to impaired insulin action, and that this impairment would be worsened in HF fed mice. Insulin sensitivity was tested using the hyperinsulinemic-euglycemic clamp in SIRT2 KO mice and WT littermates. SIRT2 KO mice exhibited reduced skeletal muscle insulin-induced glucose uptake compared to lean WT mice, and this impairment was exacerbated in HF SIRT2 KO mice. Liver insulin sensitivity was unaffected in lean SIRT2 KO mice. However, the insulin resistance that accompanies HF-feeding was worsened in SIRT2 KO mice. It was notable that the effects of SIRT2 KO were largely disassociated from cytosolic acetylation state, but were closely linked to acetylation state in the mitochondria. SIRT2 KO led to an increase in body weight that was due to increased food intake in HF fed mice. In summary, SIRT2 deletion in vivo reduces muscle insulin sensitivity and contributes to liver insulin resistance by a mechanism that is unrelated to cytosolic acetylation state. Mitochondrial acetylation state and changes in feeding behavior that result in increased body weight correspond to the deleterious effects of SIRT2 KO on insulin action.
2 Communities
1 Members
0 Resources
16 MeSH Terms
Bid maintains mitochondrial cristae structure and function and protects against cardiac disease in an integrative genomics study.
Salisbury-Ruf CT, Bertram CC, Vergeade A, Lark DS, Shi Q, Heberling ML, Fortune NL, Okoye GD, Jerome WG, Wells QS, Fessel J, Moslehi J, Chen H, Roberts LJ, Boutaud O, Gamazon ER, Zinkel SS
(2018) Elife 7:
MeSH Terms: Animals, Apoptosis, BH3 Interacting Domain Death Agonist Protein, Beclin-1, Cell Respiration, Fibrosis, Gene Expression Regulation, Genome-Wide Association Study, Genomics, Heart Diseases, Heart Ventricles, Humans, Mice, Inbred C57BL, Mitochondria, Mitochondrial Proton-Translocating ATPases, Mutation, Myeloid Progenitor Cells, Myocardial Infarction, Myocytes, Cardiac, Polymorphism, Single Nucleotide, Protein Multimerization, Protein Structure, Secondary, Protein Subunits, Reactive Oxygen Species, Reproducibility of Results, Up-Regulation
Show Abstract · Added December 11, 2018
Bcl-2 family proteins reorganize mitochondrial membranes during apoptosis, to form pores and rearrange cristae. In vitro and in vivo analysis integrated with human genetics reveals a novel homeostatic mitochondrial function for Bcl-2 family protein Bid. Loss of full-length Bid results in apoptosis-independent, irregular cristae with decreased respiration. mice display stress-induced myocardial dysfunction and damage. A gene-based approach applied to a biobank, validated in two independent GWAS studies, reveals that decreased genetically determined BID expression associates with myocardial infarction (MI) susceptibility. Patients in the bottom 5% of the expression distribution exhibit >4 fold increased MI risk. Carrier status with nonsynonymous variation in Bid's membrane binding domain, Bid, associates with MI predisposition. Furthermore, Bid but not Bid associates with Mcl-1, previously implicated in cristae stability; decreased MCL-1 expression associates with MI. Our results identify a role for Bid in homeostatic mitochondrial cristae reorganization, that we link to human cardiac disease.
© 2018, Salisbury-Ruf et al.
0 Communities
3 Members
0 Resources
26 MeSH Terms
The Role of Mitochondrial DNA Variation in Age-Related Decline in Gait Speed Among Older Men Living With Human Immunodeficiency Virus.
Sun J, Brown TT, Samuels DC, Hulgan T, D'Souza G, Jamieson BD, Erlandson KM, Martinson J, Palella FJ, Margolick JB, Kirk GD, Schrack JA
(2018) Clin Infect Dis 67: 778-784
MeSH Terms: Age Factors, Aging, Body Composition, Cohort Studies, DNA, Mitochondrial, Genetic Variation, HIV Infections, Haplotypes, Humans, Logistic Models, Male, Middle Aged, Odds Ratio, Risk Factors, Sexual and Gender Minorities, Walking Speed
Show Abstract · Added March 21, 2018
Background - Age-related gait speed decline is accelerated in men with human immunodeficiency virus (HIV). Mitochondrial genetic variation is associated with frailty and mortality in the general population and may provide insight into mechanisms of functional decline in people aging with HIV.
Methods - Gait speed was assessed semiannually in the Multicenter AIDS Cohort Study. Mitochondrial DNA (mtDNA) haplogroups were extracted from genome-wide genotyping data, classifying men aged ≥50 years into 5 groups: mtDNA haplogroup H, J, T, Uk, and other. Differences in gait speed by haplogroups were assessed as rate of gait speed decline per year, probability of slow gait speed (<1.0 m/s), and hazard of slow gait using multivariable linear mixed-effects models, mixed-effects logistic regression models, and the Andersen-Gill model, controlling for hepatitis C virus infection, previous AIDS diagnosis, thymidine analogues exposure, education, body composition, smoking, and peripheral neuropathy. Age was further controlled for in the mixed-effects logistic regression models.
Results - A total of 455 HIV-positive white men aged ≥50 years contributed 3283 person-years of follow-up. Among them, 70% had achieved HIV viral suppression. In fully adjusted models, individuals with haplogroup J had more rapid decline in gait speed (adjusted slopes, 0.018 m/s/year vs 0.011 m/s/year, pinteraction = 0.012) and increased risk of developing slow gait (adjusted odds ratio, 2.97; 95% confidence interval, 1.24-7.08) compared to those with other haplogroups.
Conclusions - Among older, HIV-infected men, mtDNA haplogroup J was an independent risk factor for more rapid age-related gait speed decline.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Oxidative stress increases M1dG, a major peroxidation-derived DNA adduct, in mitochondrial DNA.
Wauchope OR, Mitchener MM, Beavers WN, Galligan JJ, Camarillo JM, Sanders WD, Kingsley PJ, Shim HN, Blackwell T, Luong T, deCaestecker M, Fessel JP, Marnett LJ
(2018) Nucleic Acids Res 46: 3458-3467
MeSH Terms: Animals, Bone Morphogenetic Protein Receptors, Type II, DNA Adducts, DNA, Mitochondrial, Electron Transport, Endothelial Cells, Gene Expression Regulation, Humans, Hypertension, Pulmonary, Lipid Peroxidation, Mice, Mice, Transgenic, Mitochondria, Mutagenesis, Oxidants, Oxidative Stress, Purine Nucleosides, Reactive Oxygen Species, Superoxides
Show Abstract · Added March 14, 2018
Reactive oxygen species (ROS) are formed in mitochondria during electron transport and energy generation. Elevated levels of ROS lead to increased amounts of mitochondrial DNA (mtDNA) damage. We report that levels of M1dG, a major endogenous peroxidation-derived DNA adduct, are 50-100-fold higher in mtDNA than in nuclear DNA in several different human cell lines. Treatment of cells with agents that either increase or decrease mitochondrial superoxide levels leads to increased or decreased levels of M1dG in mtDNA, respectively. Sequence analysis of adducted mtDNA suggests that M1dG residues are randomly distributed throughout the mitochondrial genome. Basal levels of M1dG in mtDNA from pulmonary microvascular endothelial cells (PMVECs) from transgenic bone morphogenetic protein receptor 2 mutant mice (BMPR2R899X) (four adducts per 106 dG) are twice as high as adduct levels in wild-type cells. A similar increase was observed in mtDNA from heterozygous null (BMPR2+/-) compared to wild-type PMVECs. Pulmonary arterial hypertension is observed in the presence of BMPR2 signaling disruptions, which are also associated with mitochondrial dysfunction and oxidant injury to endothelial tissue. Persistence of M1dG adducts in mtDNA could have implications for mutagenesis and mitochondrial gene expression, thereby contributing to the role of mitochondrial dysfunction in diseases.
0 Communities
3 Members
0 Resources
19 MeSH Terms
A Non-apoptotic Function of MCL-1 in Promoting Pluripotency and Modulating Mitochondrial Dynamics in Stem Cells.
Rasmussen ML, Kline LA, Park KP, Ortolano NA, Romero-Morales AI, Anthony CC, Beckermann KE, Gama V
(2018) Stem Cell Reports 10: 684-692
MeSH Terms: Apoptosis, Cell Differentiation, Cell Line, Cellular Reprogramming, Humans, Mitochondria, Mitochondrial Dynamics, Mitochondrial Membranes, Myeloid Cell Leukemia Sequence 1 Protein, Pluripotent Stem Cells, Proto-Oncogene Proteins c-bcl-2
Show Abstract · Added March 14, 2018
Human pluripotent stem cells (hPSCs) maintain a highly fragmented mitochondrial network, but the mechanisms regulating this phenotype remain unknown. Here, we describe a non-cell death function of the anti-apoptotic protein, MCL-1, in regulating mitochondrial dynamics and promoting pluripotency of stem cells. MCL-1 is induced upon reprogramming, and its inhibition or knockdown induces dramatic changes to the mitochondrial network as well as loss of the key pluripotency transcription factors, NANOG and OCT4. Aside from localizing at the outer mitochondrial membrane like other BCL-2 family members, MCL-1 is unique in that it also resides at the mitochondrial matrix in pluripotent stem cells. Mechanistically, we find MCL-1 to interact with DRP-1 and OPA1, two GTPases responsible for remodeling the mitochondrial network. Depletion of MCL-1 compromised the levels and activity of these key regulators of mitochondrial dynamics. Our findings uncover an unexpected, non-apoptotic function for MCL-1 in the maintenance of mitochondrial structure and stemness.
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Cardiac natriuretic peptides promote adipose 'browning' through mTOR complex-1.
Liu D, Ceddia RP, Collins S
(2018) Mol Metab 9: 192-198
MeSH Terms: Adipose Tissue, Brown, Animals, Atrial Natriuretic Factor, Cells, Cultured, Cyclic GMP-Dependent Protein Kinases, Female, HEK293 Cells, Humans, Male, Mechanistic Target of Rapamycin Complex 1, Mice, Mice, Inbred C57BL, Mitochondria, Signal Transduction, Uncoupling Protein 1
Show Abstract · Added September 25, 2018
OBJECTIVE - Activation of thermogenesis in brown adipose tissue (BAT) and the ability to increase uncoupling protein 1 (UCP1) levels and mitochondrial biogenesis in white fat (termed 'browning'), has great therapeutic potential to treat obesity and its comorbidities because of the net increase in energy expenditure. β-adrenergic-cAMP-PKA signaling has long been known to regulate these processes. Recently PKA-dependent activation of mammalian target of rapamycin complex 1 (mTORC1) was shown to be necessary for adipose 'browning' as well as proper development of the interscapular BAT. In addition to cAMP-PKA signaling pathways, cGMP-PKG signaling also promotes this browning process; however, it is unclear whether or not mTORC1 is also necessary for cGMP-PKG induced browning.
METHOD - Activation of mTORC1 by natriuretic peptides (NP), which bind to and activate the membrane-bound guanylyl cyclase, NP receptor A (NPRA), was assessed in mouse and human adipocytes in vitro and mouse adipose tissue in vivo.
RESULTS - Activation of mTORC1 by NP-cGMP signaling was observed in both mouse and human adipocytes. We show that NP-NPRA-PKG signaling activate mTORC1 by direct PKG phosphorylation of Raptor at Serine 791. Administration of B-type natriuretic peptide (BNP) to mice induced Ucp1 expression in inguinal adipose tissue in vivo, which was completely blocked by the mTORC1 inhibitor rapamycin.
CONCLUSION - Our results demonstrate that NP-cGMP signaling activates mTORC1 via PKG, which is a component in the mechanism of adipose browning.
Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Mitochondrial Haplogroups Modify the Effect of Diabetes Duration and HbA1c on Proliferative Diabetic Retinopathy Risk in Patients With Type 2 Diabetes.
Mitchell SL, Neininger AC, Bruce CN, Chocron IM, Bregman JA, Estopinal CB, Muhammad A, Umfress AC, Jarrell KL, Warden C, Harlow PA, Wellons M, Samuels DC, Brantley MA
(2017) Invest Ophthalmol Vis Sci 58: 6481-6488
MeSH Terms: Aged, Blood Glucose, Case-Control Studies, DNA, Mitochondrial, Diabetes Mellitus, Type 2, Diabetic Retinopathy, European Continental Ancestry Group, Female, Glycated Hemoglobin A, Haplotypes, Humans, Male, Mitochondria, Polymorphism, Single Nucleotide, Risk Factors, United States
Show Abstract · Added March 21, 2018
Purpose - We previously demonstrated an association between European mitochondrial haplogroups and proliferative diabetic retinopathy (PDR). The purpose of this study was to determine how the relationship between these haplogroups and both diabetes duration and hyperglycemia, two major risk factors for diabetic retinopathy (DR), affect PDR prevalence.
Methods - Our population consisted of patients with type 2 diabetes with (n = 377) and without (n = 480) DR. A Kruskal-Wallis test was used to compare diabetes duration and hemoglobin A1c (HbA1c) among mitochondrial haplogroups. Logistic regressions were performed to investigate diabetes duration and HbA1c as risk factors for PDR in the context of European mitochondrial haplogroups.
Results - Neither diabetes duration nor HbA1c differed among mitochondrial haplogroups. Among DR patients from haplogroup H, longer diabetes duration and increasing HbA1c were significant risk factors for PDR (P = 0.0001 and P = 0.011, respectively). Neither diabetes duration nor HbA1c was a significant risk factor for PDR in DR patients from haplogroup UK.
Conclusions - European mitochondrial haplogroups modify the effects of diabetes duration and HbA1c on PDR risk in patients with type 2 diabetes. In our patient population, longer diabetes duration and higher HbA1c increased PDR risk in patients from haplogroup H, but did not affect PDR risk in patients from haplogroup UK. This relationship has not been previously demonstrated and may explain, in part, why some patients with nonproliferative DR develop PDR and others do not, despite similar diabetes duration and glycemic control.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism.
Warren EB, Aicher AE, Fessel JP, Konradi C
(2017) PLoS One 12: e0190456
MeSH Terms: Animals, Cells, Cultured, Corpus Striatum, Creatine Kinase, DNA, Mitochondrial, Energy Metabolism, Ethidium, Glycolysis, Humans, Mitochondria, Oxygen Consumption, Rats, Rats, Sprague-Dawley
Show Abstract · Added March 14, 2018
Mitochondrial DNA (mtDNA), the discrete genome which encodes subunits of the mitochondrial respiratory chain, is present at highly variable copy numbers across cell types. Though severe mtDNA depletion dramatically reduces mitochondrial function, the impact of tissue-specific mtDNA reduction remains debated. Previously, our lab identified reduced mtDNA quantity in the putamen of Parkinson's Disease (PD) patients who had developed L-DOPA Induced Dyskinesia (LID), compared to PD patients who had not developed LID and healthy subjects. Here, we present the consequences of mtDNA depletion by ethidium bromide (EtBr) treatment on the bioenergetic function of primary cultured neurons, astrocytes and neuron-enriched cocultures from rat striatum. We report that EtBr inhibition of mtDNA replication and transcription consistently reduces mitochondrial oxygen consumption, and that neurons are significantly more sensitive to EtBr than astrocytes. EtBr also increases glycolytic activity in astrocytes, whereas in neurons it reduces the expression of mitochondrial creatine kinase mRNA and levels of phosphocreatine. Further, we show that mitochondrial creatine kinase mRNA is similarly downregulated in dyskinetic PD patients, compared to both non-dyskinetic PD patients and healthy subjects. Our data support a hypothesis that reduced striatal mtDNA contributes to energetic dysregulation in the dyskinetic striatum by destabilizing the energy buffering system of the phosphocreatine/creatine shuttle.
0 Communities
2 Members
0 Resources
13 MeSH Terms
Cellular accumulation and antioxidant activity of acetoxymethoxycarbonyl pyrrolidine nitroxides.
Dikalov SI, Dikalova AE, Morozov DA, Kirilyuk IA
(2018) Free Radic Res 52: 339-350
MeSH Terms: Antioxidants, Cyclic N-Oxides, Electron Spin Resonance Spectroscopy, Mitochondria, Nitrogen Oxides
Show Abstract · Added March 26, 2019
Nitroxides are widely used in biology as antioxidants, spin labels, functional spin probes for pH, oxygen and thiol levels, and tissue redox status imaging using electron paramagnetic resonance (EPR); however, biological applications of nitroxides is hindered by fast bioreduction to EPR-silent hydroxylamines and rapid clearance. In this work, we have studied pyrrolidine nitroxides with acetoxymethoxycarbonyl groups which can undergo hydrolysis by cellular esterases to hydrophilic carboxylate derivatives resistant to bioreduction. Nitroxides containing acetoxymethoxycarbonyl groups were rapidly absorbed by cells from the media, 3,4-bis-(acetoxymethoxycarbonyl)-proxyl (DCP-AM2) and 3-(2-(bis(2-(acetoxymethoxy)-2-oxoethyl)amino)acetamido)-proxyl (DCAP-AM2) showing the strongest EPR signal of the cellular fraction. Remarkably, the EPR parameters of 3,4-dicarboxy-proxyl (DCP) and its mono- and di-acetoxymethyl esters are different, and consequent intracellular hydrolysis of acetoxymethoxycarbonyl groups in DCP-AM2 can be followed by EPR. To elucidate intracellular location of the resultant DCP, the mitochondrial fraction has been isolated. EPR measurements showed that mitochondria were the main place where DCP was finally accumulated. TEMPO derivatives showed expectedly much faster decay of EPR signal in the cellular fraction, compared to pyrrolidine nitroxides. It was found that supplementation of endothelial cells with 50 nM of DCP-AM2 completely normalised the mitochondrial superoxide level. Moreover, administration of DCP-AM2 to mice (1.4 mg/kg/day) resulted in substantial nitroxide accumulation in the tissues and significantly reduced hypertension. We found that hydroxylamine derivatives of dicarboxyproxyl nitroxide DCP-AM-H can be used for the detection of superoxide in vivo in angiotensin II model of hypertension. Infusion of DCP-AM-H in mice leads to accumulation of persistent EPR signal of nitroxide in the blood and vascular tissue in angiotensin II-infused wild-type but not in SOD2 overexpressing mice. Our data demonstrate that acetoxymethoxycarbonyl group containing nitroxides accumulate in mitochondria and demonstrate site-specific antioxidant activity.
0 Communities
1 Members
0 Resources
MeSH Terms
MYC and MCL1 Cooperatively Promote Chemotherapy-Resistant Breast Cancer Stem Cells via Regulation of Mitochondrial Oxidative Phosphorylation.
Lee KM, Giltnane JM, Balko JM, Schwarz LJ, Guerrero-Zotano AL, Hutchinson KE, Nixon MJ, Estrada MV, Sánchez V, Sanders ME, Lee T, Gómez H, Lluch A, Pérez-Fidalgo JA, Wolf MM, Andrejeva G, Rathmell JC, Fesik SW, Arteaga CL
(2017) Cell Metab 26: 633-647.e7
MeSH Terms: Animals, Cell Line, Tumor, Drug Resistance, Neoplasm, Female, Humans, Mice, Nude, Mitochondria, Myeloid Cell Leukemia Sequence 1 Protein, Neoplastic Stem Cells, Oxidative Phosphorylation, Proto-Oncogene Proteins c-myc, Reactive Oxygen Species, Triple Negative Breast Neoplasms
Show Abstract · Added March 14, 2018
Most patients with advanced triple-negative breast cancer (TNBC) develop drug resistance. MYC and MCL1 are frequently co-amplified in drug-resistant TNBC after neoadjuvant chemotherapy. Herein, we demonstrate that MYC and MCL1 cooperate in the maintenance of chemotherapy-resistant cancer stem cells (CSCs) in TNBC. MYC and MCL1 increased mitochondrial oxidative phosphorylation (mtOXPHOS) and the generation of reactive oxygen species (ROS), processes involved in maintenance of CSCs. A mutant of MCL1 that cannot localize in mitochondria reduced mtOXPHOS, ROS levels, and drug-resistant CSCs without affecting the anti-apoptotic function of MCL1. Increased levels of ROS, a by-product of activated mtOXPHOS, led to the accumulation of HIF-1α. Pharmacological inhibition of HIF-1α attenuated CSC enrichment and tumor initiation in vivo. These data suggest that (1) MYC and MCL1 confer resistance to chemotherapy by expanding CSCs via mtOXPHOS and (2) targeting mitochondrial respiration and HIF-1α may reverse chemotherapy resistance in TNBC.
Copyright © 2017. Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
13 MeSH Terms