Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 31

Publication Record

Connections

Microvascular disease confers additional risk to COVID-19 infection.
Bale BF, Doneen AL, Vigerust DJ
(2020) Med Hypotheses 144: 109999
MeSH Terms: Adult, Aging, COVID-19, Cardiovascular Diseases, Child, Diabetes Mellitus, Disease Susceptibility, Humans, Hydrogen Peroxide, Hypertension, Hypochlorous Acid, Immunity, Innate, Lung, Microcirculation, Microvessels, Neutrophils, Pandemics, Peroxidase, Risk Factors, United States
Show Abstract · Added June 25, 2020
The majority of fatalities thus far in the COVID-19 pandemic have been attributed to pneumonia. As expected, the fatality rate reported in China is higher in people with chronic pulmonary disease (6.3%) and those who have cancer (5.6%). According to the American College of Cardiology Clinical Bulletin "COVID-19 Clinical Guidance for the CV Care Team", there is a significantly higher fatality rate in people who are elderly (8.0% 70-79 years; 14.8% ≥80 years), diabetic (7.3%), hypertensive (6.0%), or have known cardiovascular disease (CVD) (10.5%). We propose a biological reason for the higher mortality risk in these populations that is apparent. We further present a set of pathophysiological reasons for the heightened danger that could lead to therapies for enhanced management and prevention.
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Rapid changes in the microvascular circulation of skeletal muscle impair insulin delivery during sepsis.
Mignemi NA, McClatchey PM, Kilchrist KV, Williams IM, Millis BA, Syring KE, Duvall CL, Wasserman DH, McGuinness OP
(2019) Am J Physiol Endocrinol Metab 316: E1012-E1023
MeSH Terms: Animals, Capillaries, Capillary Permeability, Disease Models, Animal, Echocardiography, Hyperglycemia, Insulin, Insulin Resistance, Lipopolysaccharides, Mice, Microcirculation, Microvessels, Muscle Fibers, Skeletal, Muscle, Skeletal, Sepsis
Show Abstract · Added March 26, 2019
Sepsis costs the healthcare system $23 billion annually and has a mortality rate between 10 and 40%. An early indication of sepsis is the onset of hyperglycemia, which is the result of sepsis-induced insulin resistance in skeletal muscle. Previous investigations have focused on events in the myocyte (e.g., insulin signaling and glucose transport and subsequent metabolism) as the causes for this insulin-resistant state. However, the delivery of insulin to the skeletal muscle is also an important determinant of insulin action. Skeletal muscle microvascular blood flow, which delivers the insulin to the muscle, is known to be decreased during sepsis. Here we test whether the reduced capillary blood flow to skeletal muscle belies the sepsis-induced insulin resistance by reducing insulin delivery to the myocyte. We hypothesize that decreased capillary flow and consequent decrease in insulin delivery is an early event that precedes gross cardiovascular alterations seen with sepsis. This hypothesis was examined in mice treated with either lipopolysaccharide (LPS) or polymicrobial sepsis followed by intravital microscopy of the skeletal muscle microcirculation. We calculated insulin delivery to the myocyte using two independent methods and found that LPS and sepsis rapidly reduce insulin delivery to the skeletal muscle by ~50%; this was driven by decreases in capillary flow velocity and the number of perfused capillaries. Furthermore, the changes in skeletal muscle microcirculation occur before changes in both cardiac output and arterial blood pressure. These data suggest that a rapid reduction in skeletal muscle insulin delivery contributes to the induction of insulin resistance during sepsis.
1 Communities
1 Members
0 Resources
15 MeSH Terms
iPSC-Derived Brain Endothelium Exhibits Stable, Long-Term Barrier Function in Perfused Hydrogel Scaffolds.
Faley SL, Neal EH, Wang JX, Bosworth AM, Weber CM, Balotin KM, Lippmann ES, Bellan LM
(2019) Stem Cell Reports 12: 474-487
MeSH Terms: Albumins, Blood-Brain Barrier, Brain, Cells, Cultured, Dextrans, Endothelial Cells, Endothelium, Fluorescein, Humans, Hydrogels, Induced Pluripotent Stem Cells, Microvessels
Show Abstract · Added March 18, 2020
There is a profound need for functional, biomimetic in vitro tissue constructs of the human blood-brain barrier and neurovascular unit (NVU) to model diseases and identify therapeutic interventions. Here, we show that induced pluripotent stem cell (iPSC)-derived human brain microvascular endothelial cells (BMECs) exhibit robust barrier functionality when cultured in 3D channels within gelatin hydrogels. We determined that BMECs cultured in 3D under perfusion conditions were 10-100 times less permeable to sodium fluorescein, 3 kDa dextran, and albumin relative to human umbilical vein endothelial cell and human dermal microvascular endothelial cell controls, and the BMECs maintained barrier function for up to 21 days. Analysis of cell-cell junctions revealed expression patterns supporting barrier formation. Finally, efflux transporter activity was maintained over 3 weeks of perfused culture. Taken together, this work lays the foundation for development of a representative 3D in vitro model of the human NVU constructed from iPSCs.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Ultrasound Measurement of Vascular Density to Evaluate Response to Anti-Angiogenic Therapy in Renal Cell Carcinoma.
Rojas JD, Papadopoulou V, Czernuszewicz TJ, Rajamahendiran RM, Chytil A, Chiang YC, Chong DC, Bautch VL, Rathmell WK, Aylward S, Gessner RC, Dayton PA
(2019) IEEE Trans Biomed Eng 66: 873-880
MeSH Terms: Angiogenesis Inhibitors, Angiography, Animals, Carcinoma, Renal Cell, Drug Monitoring, Female, Heterografts, Kidney, Kidney Neoplasms, Mice, Mice, Inbred NOD, Mice, SCID, Microvessels, Ultrasonography
Show Abstract · Added October 30, 2019
BACKGROUND - Functional and molecular changes often precede gross anatomical changes, so early assessment of a tumor's functional and molecular response to therapy can help reduce a patient's exposure to the side effects of ineffective chemotherapeutics or other treatment strategies.
OBJECTIVE - Our intent was to test the hypothesis that an ultrasound microvascular imaging approach might provide indications of response to therapy prior to assessment of tumor size.
METHODS - Mice bearing clear-cell renal cell carcinoma xenograft tumors were treated with antiangiogenic and Notch inhibition therapies. An ultrasound measurement of microvascular density was used to serially track the tumor response to therapy.
RESULTS - Data indicated that ultrasound-derived microvascular density can indicate response to therapy a week prior to changes in tumor volume and is strongly correlated with physiological characteristics of the tumors as measured by histology ([Formula: see text]). Furthermore, data demonstrated that ultrasound measurements of vascular density can determine response to therapy and classify between-treatment groups with high sensitivity and specificity.
CONCLUSION/SIGNIFICANCE - Results suggests that future applications utilizing ultrasound imaging to monitor tumor response to therapy may be able to provide earlier insight into tumor behavior from metrics of microvascular density rather than anatomical tumor size measurements.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Automated quantification of microvascular perfusion.
McClatchey PM, Mignemi NA, Xu Z, Williams IM, Reusch JEB, McGuinness OP, Wasserman DH
(2018) Microcirculation 25: e12482
MeSH Terms: Animals, Automation, Blood Flow Velocity, Hematocrit, Mice, Microcirculation, Microscopy, Fluorescence, Microscopy, Video, Microvessels, Perfusion, Phenylephrine, Reproducibility of Results, Saline Solution, Software
Show Abstract · Added March 26, 2019
OBJECTIVE - Changes in microvascular perfusion have been reported in many diseases, yet the functional significance of altered perfusion is often difficult to determine. This is partly because commonly used techniques for perfusion measurement often rely on either indirect or by-hand approaches.
METHODS - We developed and validated a fully automated software technique to measure microvascular perfusion in videos acquired by fluorescence microscopy in the mouse gastrocnemius. Acute perfusion responses were recorded following intravenous injections with phenylephrine, SNP, or saline.
RESULTS - Software-measured capillary flow velocity closely correlated with by-hand measured flow velocity (R = 0.91, P < 0.0001). Software estimates of capillary hematocrit also generally agreed with by-hand measurements (R = 0.64, P < 0.0001). Detection limits range from 0 to 2000 μm/s, as compared to an average flow velocity of 326 ± 102 μm/s (mean ± SD) at rest. SNP injection transiently increased capillary flow velocity and hematocrit and made capillary perfusion more steady and homogenous. Phenylephrine injection had the opposite effect in all metrics. Saline injection transiently decreased capillary flow velocity and hematocrit without influencing flow distribution or stability. All perfusion metrics were temporally stable without intervention.
CONCLUSIONS - These results demonstrate a novel and sensitive technique for reproducible, user-independent quantification of microvascular perfusion.
© 2018 John Wiley & Sons Ltd.
1 Communities
1 Members
0 Resources
14 MeSH Terms
Von Hippel-Lindau mutations disrupt vascular patterning and maturation via Notch.
Arreola A, Payne LB, Julian MH, de Cubas AA, Daniels AB, Taylor S, Zhao H, Darden J, Bautch VL, Rathmell WK, Chappell JC
(2018) JCI Insight 3:
MeSH Terms: Animals, Diamines, Disease Models, Animal, Endothelial Cells, Female, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Hemangioblastoma, Humans, Male, Mice, Mice, Transgenic, Microvessels, Mutation, Receptors, Notch, Retinal Artery, Thiazoles, Von Hippel-Lindau Tumor Suppressor Protein, von Hippel-Lindau Disease
Show Abstract · Added October 30, 2019
Von Hippel-Lindau (VHL) gene mutations induce neural tissue hemangioblastomas, as well as highly vascularized clear cell renal cell carcinomas (ccRCCs). Pathological vessel remodeling arises from misregulation of HIFs and VEGF, among other genes. Variation in disease penetrance has long been recognized in relation to genotype. We show Vhl mutations also disrupt Notch signaling, causing mutation-specific vascular abnormalities, e.g., type 1 (null) vs. type 2B (murine G518A representing human R167Q). In conditional mutation retina vasculature, Vhl-null mutation (i.e., UBCCreER/+Vhlfl/fl) had little effect on initial vessel branching, but it severely reduced arterial and venous branching at later stages. Interestingly, this mutation accelerated arterial maturation, as observed in retina vessel morphology and aberrant α-smooth muscle actin localization, particularly in vascular pericytes. RNA sequencing analysis identified gene expression changes within several key pathways, including Notch and smooth muscle cell contractility. Notch inhibition failed to reverse later-stage branching defects but rescued the accelerated arterialization. Retinal vessels harboring the type 2B Vhl mutation (i.e., UBCCreER/+Vhlfl/2B) displayed stage-specific changes in vessel branching and an advanced progression toward an arterial phenotype. Disrupting Notch signaling in type 2B mutants increased both artery and vein branching and restored arterial maturation toward nonmutant levels. By revealing differential effects of the null and type 2B Vhl mutations on vessel branching and maturation, these data may provide insight into the variability of VHL-associated vascular changes - particularly the heterogeneity and aggressiveness in ccRCC vessel growth - and also suggest Notch pathway targets for treating VHL syndrome.
0 Communities
2 Members
0 Resources
19 MeSH Terms
Cell-free hemoglobin promotes primary graft dysfunction through oxidative lung endothelial injury.
Shaver CM, Wickersham N, McNeil JB, Nagata H, Miller A, Landstreet SR, Kuck JL, Diamond JM, Lederer DJ, Kawut SM, Palmer SM, Wille KM, Weinacker A, Lama VN, Crespo MM, Orens JB, Shah PD, Hage CA, Cantu E, Porteous MK, Dhillon G, McDyer J, Bastarache JA, Christie JD, Ware LB, Lung Transplant Outcomes Group (LTOG)
(2018) JCI Insight 3:
MeSH Terms: Acetaminophen, Allografts, Capillary Permeability, Case-Control Studies, Cell Line, Endothelial Cells, Female, Hemoglobins, Humans, Hyperoxia, Lung, Lung Transplantation, Male, Microvessels, Middle Aged, Oxidative Stress, Primary Graft Dysfunction
Show Abstract · Added May 31, 2018
Primary graft dysfunction (PGD) is acute lung injury within 72 hours of lung transplantation. We hypothesized that cell-free hemoglobin (CFH) contributes to PGD by increasing lung microvascular permeability and tested this in patients, ex vivo human lungs, and cultured human lung microvascular endothelial cells. In a nested case control study of 40 patients with severe PGD at 72 hours and 80 matched controls without PGD, elevated preoperative CFH was independently associated with increased PGD risk (odds ratio [OR] 2.75, 95%CI, 1.23-6.16, P = 0.014). The effect of CFH on PGD was magnified by reperfusion fraction of inspired oxygen (FiO2) ≥ 0.40 (OR 3.41, P = 0.031). Isolated perfused human lungs exposed to intravascular CFH (100 mg/dl) developed increased vascular permeability as measured by lung weight (CFH 14.4% vs. control 0.65%, P = 0.047) and extravasation of Evans blue-labeled albumin dye (EBD) into the airspace (P = 0.027). CFH (1 mg/dl) also increased paracellular permeability of human pulmonary microvascular endothelial cell monolayers (hPMVECs). Hyperoxia (FiO2 = 0.95) increased human lung and hPMVEC permeability compared with normoxia (FiO2 = 0.21). Treatment with acetaminophen (15 μg/ml), a specific hemoprotein reductant, prevented CFH-dependent permeability in human lungs (P = 0.046) and hPMVECs (P = 0.037). In summary, CFH may mediate PGD through oxidative effects on microvascular permeability, which are augmented by hyperoxia and abrogated by acetaminophen.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Disruption of lineage specification in adult pulmonary mesenchymal progenitor cells promotes microvascular dysfunction.
Gaskill CF, Carrier EJ, Kropski JA, Bloodworth NC, Menon S, Foronjy RF, Taketo MM, Hong CC, Austin ED, West JD, Means AL, Loyd JE, Merryman WD, Hemnes AR, De Langhe S, Blackwell TS, Klemm DJ, Majka SM
(2017) J Clin Invest 127: 2262-2276
MeSH Terms: ATP Binding Cassette Transporter, Subfamily G, Member 2, Animals, Bone Morphogenetic Protein Receptors, Type II, Cell Differentiation, Cell Lineage, Cells, Cultured, Humans, Lung, Mesenchymal Stem Cells, Mice, Transgenic, Microvessels, Neovascularization, Pathologic, Pericytes, Protein Stability, Pulmonary Fibrosis, Vasoconstriction, Wnt Signaling Pathway
Show Abstract · Added June 6, 2017
Pulmonary vascular disease is characterized by remodeling and loss of microvessels and is typically attributed to pathological responses in vascular endothelium or abnormal smooth muscle cell phenotypes. We have challenged this understanding by defining an adult pulmonary mesenchymal progenitor cell (MPC) that regulates both microvascular function and angiogenesis. The current understanding of adult MPCs and their roles in homeostasis versus disease has been limited by a lack of genetic markers with which to lineage label multipotent mesenchyme and trace the differentiation of these MPCs into vascular lineages. Here, we have shown that lineage-labeled lung MPCs expressing the ATP-binding cassette protein ABCG2 (ABCG2+) are pericyte progenitors that participate in microvascular homeostasis as well as adaptive angiogenesis. Activation of Wnt/β-catenin signaling, either autonomously or downstream of decreased BMP receptor signaling, enhanced ABCG2+ MPC proliferation but suppressed MPC differentiation into a functional pericyte lineage. Thus, enhanced Wnt/β-catenin signaling in ABCG2+ MPCs drives a phenotype of persistent microvascular dysfunction, abnormal angiogenesis, and subsequent exacerbation of bleomycin-induced fibrosis. ABCG2+ MPCs may, therefore, account in part for the aberrant microvessel function and remodeling that are associated with chronic lung diseases.
0 Communities
3 Members
0 Resources
17 MeSH Terms
Matrix stiffening promotes a tumor vasculature phenotype.
Bordeleau F, Mason BN, Lollis EM, Mazzola M, Zanotelli MR, Somasegar S, Califano JP, Montague C, LaValley DJ, Huynh J, Mencia-Trinchant N, Negrón Abril YL, Hassane DC, Bonassar LJ, Butcher JT, Weiss RS, Reinhart-King CA
(2017) Proc Natl Acad Sci U S A 114: 492-497
MeSH Terms: Animals, Biomechanical Phenomena, Cattle, Cells, Cultured, Chick Embryo, Collagen, Extracellular Matrix, Female, Human Umbilical Vein Endothelial Cells, Humans, Mammary Neoplasms, Experimental, Matrix Metalloproteinases, Mice, Microvessels, Neoplasm Invasiveness, Neovascularization, Pathologic, Phenotype, Tumor Microenvironment, Vascular Stiffness
Show Abstract · Added April 10, 2019
Tumor microvasculature tends to be malformed, more permeable, and more tortuous than vessels in healthy tissue, effects that have been largely attributed to up-regulated VEGF expression. However, tumor tissue tends to stiffen during solid tumor progression, and tissue stiffness is known to alter cell behaviors including proliferation, migration, and cell-cell adhesion, which are all requisite for angiogenesis. Using in vitro, in vivo, and ex ovo models, we investigated the effects of matrix stiffness on vessel growth and integrity during angiogenesis. Our data indicate that angiogenic outgrowth, invasion, and neovessel branching increase with matrix cross-linking. These effects are caused by increased matrix stiffness independent of matrix density, because increased matrix density results in decreased angiogenesis. Notably, matrix stiffness up-regulates matrix metalloproteinase (MMP) activity, and inhibiting MMPs significantly reduces angiogenic outgrowth in stiffer cross-linked gels. To investigate the functional significance of altered endothelial cell behavior in response to matrix stiffness, we measured endothelial cell barrier function on substrates mimicking the stiffness of healthy and tumor tissue. Our data indicate that barrier function is impaired and the localization of vascular endothelial cadherin is altered as function of matrix stiffness. These results demonstrate that matrix stiffness, separately from matrix density, can alter vascular growth and integrity, mimicking the changes that exist in tumor vasculature. These data suggest that therapeutically targeting tumor stiffness or the endothelial cell response to tumor stiffening may help restore vessel structure, minimize metastasis, and aid in drug delivery.
0 Communities
1 Members
0 Resources
MeSH Terms
CCK increases the transport of insulin into the brain.
May AA, Liu M, Woods SC, Begg DP
(2016) Physiol Behav 165: 392-7
MeSH Terms: Animals, Blood-Brain Barrier, Brain, Gene Expression Regulation, In Vitro Techniques, Insulin, Male, Microvessels, Protein Transport, RNA, Messenger, Rats, Rats, Long-Evans, Receptor, Cholecystokinin A, Sincalide
Show Abstract · Added March 2, 2017
Food intake occurs in bouts or meals, and numerous meal-generated signals have been identified that act to limit the size of ongoing meals. Hormones such as cholecystokinin (CCK) are secreted from the intestine as ingested food is being processed, and in addition to aiding the digestive process, they provide a signal to the brain that contributes to satiation, limiting the size of the meal. The potency of CCK to elicit satiation is enhanced by elevated levels of adiposity signals such as insulin. In the present experiments we asked whether CCK and insulin interact at the level of the blood-brain barrier (BBB). We first isolated rat brain capillary endothelial cells that comprise the BBB and found that they express the mRNA for both the CCK1R and the insulin receptor, providing a basis for a possible interaction. We then administered insulin intraperitoneally to another group of rats and 15min later administered CCK-8 intraperitoneally to half of those rats. After another 15min, CSF and blood samples were obtained and assayed for immunoreactive insulin. Plasma insulin was comparably elevated above baseline in both the CCK-8 and control groups, indicating that the CCK had no effect on circulating insulin levels given these parameters. In contrast, rats administered CCK had CSF-insulin levels that were more than twice as high as those of control rats. We conclude that circulating CCK greatly facilitates the transport of insulin into the brain, likely by acting directly at the BBB. These findings imply that in circumstances in which the plasma levels of both CCK and insulin are elevated, such as during and soon after meals, satiation is likely to be due, in part, to this newly-discovered synergy between CCK and insulin.
Copyright © 2016 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
14 MeSH Terms