Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 358

Publication Record

Connections

Lipid Droplet Accumulation in Human Pancreatic Islets Is Dependent On Both Donor Age and Health.
Tong X, Dai C, Walker JT, Nair GG, Kennedy A, Carr RM, Hebrok M, Powers AC, Stein R
(2020) Diabetes 69: 342-354
MeSH Terms: Acinar Cells, Adolescent, Adult, Age Factors, Aged, Animals, Child, Child, Preschool, Diabetes Mellitus, Experimental, Diabetes Mellitus, Type 2, Embryonic Stem Cells, Female, Glucagon-Secreting Cells, Humans, Infant, Insulin-Secreting Cells, Islets of Langerhans, Islets of Langerhans Transplantation, Lipid Droplets, Male, Mice, Microscopy, Electron, Microscopy, Fluorescence, Middle Aged, Rats, Tissue Donors, Young Adult
Show Abstract · Added March 29, 2020
Human but not mouse islets transplanted into immunodeficient NSG mice effectively accumulate lipid droplets (LDs). Because chronic lipid exposure is associated with islet β-cell dysfunction, we investigated LD accumulation in the intact human and mouse pancreas over a range of ages and states of diabetes. Very few LDs were found in normal human juvenile pancreatic acinar and islet cells, with numbers subsequently increasing throughout adulthood. While accumulation appeared evenly distributed in postjuvenile acinar and islet cells in donors without diabetes, LDs were enriched in islet α- and β-cells from donors with type 2 diabetes (T2D). LDs were also found in the islet β-like cells produced from human embryonic cell-derived β-cell clusters. In contrast, LD accumulation was nearly undetectable in the adult rodent pancreas, even in hyperglycemic and hyperlipidemic models or 1.5-year-old mice. Taken together, there appear to be significant differences in pancreas islet cell lipid handling between species, and the human juvenile and adult cell populations. Moreover, our results suggest that LD enrichment could be impactful to T2D islet cell function.
© 2019 by the American Diabetes Association.
0 Communities
1 Members
0 Resources
27 MeSH Terms
neurons have functional dendritic spines.
Cuentas-Condori A, Mulcahy B, He S, Palumbos S, Zhen M, Miller DM
(2019) Elife 8:
MeSH Terms: Animals, Caenorhabditis elegans, Dendritic Spines, Intravital Microscopy, Microscopy, Electron, Microscopy, Fluorescence, Motor Neurons, Organelles
Show Abstract · Added March 3, 2020
Dendritic spines are specialized postsynaptic structures that transduce presynaptic signals, are regulated by neural activity and correlated with learning and memory. Most studies of spine function have focused on the mammalian nervous system. However, spine-like protrusions have been reported in (Philbrook et al., 2018), suggesting that the experimental advantages of smaller model organisms could be exploited to study the biology of dendritic spines. Here, we used super-resolution microscopy, electron microscopy, live-cell imaging and genetics to show that motor neurons have functional dendritic spines that: (1) are structurally defined by a dynamic actin cytoskeleton; (2) appose presynaptic dense projections; (3) localize ER and ribosomes; (4) display calcium transients triggered by presynaptic activity and propagated by internal Ca stores; (5) respond to activity-dependent signals that regulate spine density. These studies provide a solid foundation for a new experimental paradigm that exploits the power of genetics and live-cell imaging for fundamental studies of dendritic spine morphogenesis and function.
© 2019, Cuentas-Condori et al.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Assembly of myosin II filament arrays: Network Contraction versus Expansion.
Fenix AM, Burnette DT
(2018) Cytoskeleton (Hoboken) 75: 545-549
MeSH Terms: Actin Cytoskeleton, Cell Tracking, Humans, Microscopy, Electron, Models, Biological, Myosin Type II
Show Abstract · Added March 27, 2019
How cellular contractile systems assemble has fascinated scientists for generations. The major molecule responsible for cellular force generation is the molecular motor, non-muscle myosin II (NMII). NMII molecules are organized into single myosin filaments and larger arrays of filaments called NMII stacks, which are capable of generating increasing amounts of force. The textbook model of NMII stack assembly is the Network Contraction Model, where ensembles of distinct NMII filaments condense into a NMII stack by pulling on actin filaments. While this model has been widely accepted for ~20 years, it has been difficult to test inside cells due to the small size of NMII filaments. Recently, interest in how NMII stacks form has been reinvigorated by the advent of super-resolution microscopy techniques which have afforded unprecedented resolution of NMII filaments inside cells. A number of recent publications using these techniques have called into question key aspects of the Network Contraction Model, and our understanding of how NMII stacks assemble.
© 2018 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
6 MeSH Terms
HCN channels in the hippocampus regulate active coping behavior.
Fisher DW, Han Y, Lyman KA, Heuermann RJ, Bean LA, Ybarra N, Foote KM, Dong H, Nicholson DA, Chetkovich DM
(2018) J Neurochem 146: 753-766
MeSH Terms: Adaptation, Psychological, Animals, Avoidance Learning, Depression, Disease Models, Animal, Exploratory Behavior, Hippocampus, Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels, Male, Maze Learning, Membrane Proteins, Mice, Mice, Inbred C57BL, Mice, Transgenic, Microscopy, Electron, Peroxins, Pyramidal Cells, Swimming
Show Abstract · Added April 2, 2019
Active coping is an adaptive stress response that improves outcomes in medical and neuropsychiatric diseases. To date, most research into coping style has focused on neurotransmitter activity and little is known about the intrinsic excitability of neurons in the associated brain regions that facilitate coping. Previous studies have shown that HCN channels regulate neuronal excitability in pyramidal cells and that HCN channel current (I ) in the CA1 area increases with chronic mild stress. Reduction of I in the CA1 area leads to antidepressant-like behavior, and this region has been implicated in the regulation of coping style. We hypothesized that the antidepressant-like behavior achieved with CA1 knockdown of I is accompanied by increases in active coping. In this report, we found that global loss of TRIP8b, a necessary subunit for proper HCN channel localization in pyramidal cells, led to active coping behavior in numerous assays specific to coping style. We next employed a viral strategy using a dominant negative TRIP8b isoform to alter coping behavior by reducing HCN channel expression. This approach led to a robust reduction in I in CA1 pyramidal neurons and an increase in active coping. Together, these results establish that changes in HCN channel function in CA1 influences coping style.
© 2018 International Society for Neurochemistry.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Integrated Structural Biology for α-Helical Membrane Protein Structure Determination.
Xia Y, Fischer AW, Teixeira P, Weiner B, Meiler J
(2018) Structure 26: 657-666.e2
MeSH Terms: Algorithms, Binding Sites, Electron Spin Resonance Spectroscopy, Humans, Membrane Proteins, Microscopy, Electron, Models, Molecular, Monte Carlo Method, Nuclear Magnetic Resonance, Biomolecular, Protein Binding, Protein Conformation, alpha-Helical, Protein Folding, Protein Interaction Domains and Motifs, Rhodopsin, Thermodynamics
Show Abstract · Added March 17, 2018
While great progress has been made, only 10% of the nearly 1,000 integral, α-helical, multi-span membrane protein families are represented by at least one experimentally determined structure in the PDB. Previously, we developed the algorithm BCL::MP-Fold, which samples the large conformational space of membrane proteins de novo by assembling predicted secondary structure elements guided by knowledge-based potentials. Here, we present a case study of rhodopsin fold determination by integrating sparse and/or low-resolution restraints from multiple experimental techniques including electron microscopy, electron paramagnetic resonance spectroscopy, and nuclear magnetic resonance spectroscopy. Simultaneous incorporation of orthogonal experimental restraints not only significantly improved the sampling accuracy but also allowed identification of the correct fold, which is demonstrated by a protein size-normalized transmembrane root-mean-square deviation as low as 1.2 Å. The protocol developed in this case study can be used for the determination of unknown membrane protein folds when limited experimental restraints are available.
Copyright © 2018 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Human antibody recognition of antigenic site IV on Pneumovirus fusion proteins.
Mousa JJ, Binshtein E, Human S, Fong RH, Alvarado G, Doranz BJ, Moore ML, Ohi MD, Crowe JE
(2018) PLoS Pathog 14: e1006837
MeSH Terms: Amino Acid Sequence, Amino Acid Substitution, Antibodies, Monoclonal, Antibodies, Neutralizing, Antibodies, Viral, Antibody Specificity, Binding Sites, Antibody, Binding, Competitive, Cross Reactions, Epitope Mapping, Epitopes, Humans, Kinetics, Metapneumovirus, Microscopy, Electron, Mutation, Recombinant Proteins, Respiratory Syncytial Virus, Human, Viral Fusion Proteins
Show Abstract · Added March 3, 2020
Respiratory syncytial virus (RSV) is a major human pathogen that infects the majority of children by two years of age. The RSV fusion (F) protein is a primary target of human antibodies, and it has several antigenic regions capable of inducing neutralizing antibodies. Antigenic site IV is preserved in both the pre-fusion and post-fusion conformations of RSV F. Antibodies to antigenic site IV have been described that bind and neutralize both RSV and human metapneumovirus (hMPV). To explore the diversity of binding modes at antigenic site IV, we generated a panel of four new human monoclonal antibodies (mAbs) and competition-binding suggested the mAbs bind at antigenic site IV. Mutagenesis experiments revealed that binding and neutralization of two mAbs (3M3 and 6F18) depended on arginine (R) residue R429. We discovered two R429-independent mAbs (17E10 and 2N6) at this site that neutralized an RSV R429A mutant strain, and one of these mAbs (17E10) neutralized both RSV and hMPV. To determine the mechanism of cross-reactivity, we performed competition-binding, recombinant protein mutagenesis, peptide binding, and electron microscopy experiments. It was determined that the human cross-reactive mAb 17E10 binds to RSV F with a binding pose similar to 101F, which may be indicative of cross-reactivity with hMPV F. The data presented provide new concepts in RSV immune recognition and vaccine design, as we describe the novel idea that binding pose may influence mAb cross-reactivity between RSV and hMPV. Characterization of the site IV epitope bound by human antibodies may inform the design of a pan-Pneumovirus vaccine.
0 Communities
1 Members
0 Resources
MeSH Terms
Soluble Prefusion Closed DS-SOSIP.664-Env Trimers of Diverse HIV-1 Strains.
Joyce MG, Georgiev IS, Yang Y, Druz A, Geng H, Chuang GY, Kwon YD, Pancera M, Rawi R, Sastry M, Stewart-Jones GBE, Zheng A, Zhou T, Choe M, Van Galen JG, Chen RE, Lees CR, Narpala S, Chambers M, Tsybovsky Y, Baxa U, McDermott AB, Mascola JR, Kwong PD
(2017) Cell Rep 21: 2992-3002
MeSH Terms: AIDS Vaccines, Enzyme-Linked Immunosorbent Assay, HIV-1, Microscopy, Electron, env Gene Products, Human Immunodeficiency Virus
Show Abstract · Added March 14, 2018
The elicitation of autologous neutralizing responses by immunization with HIV-1 envelope (Env) trimers conformationally stabilized in a prefusion closed state has generated considerable interest in the HIV-1 vaccine field. However, soluble prefusion closed Env trimers have been produced from only a handful of HIV-1 strains, limiting their utility as vaccine antigens and B cell probes. Here, we report the engineering from 81 HIV-1 strains of soluble, fully cleaved, prefusion Env trimers with appropriate antigenicity. We used a 96-well expression-screening format to assess the ability of artificial disulfides and Ile559Pro substitution (DS-SOSIP) to produce soluble cleaved-Env trimers; from 180 Env strains, 20 yielded prefusion closed trimers. We also created chimeras, by utilizing structure-based design to incorporate select regions from the well-behaved BG505 strain; from 180 Env strains, 78 DS-SOSIP-stabilized chimeras, including 61 additional strains, yielded prefusion closed trimers. Structure-based design thus enables the production of prefusion closed HIV-1-Env trimers from dozens of diverse strains.
Published by Elsevier Inc.
0 Communities
1 Members
0 Resources
5 MeSH Terms
Experimental studies of g-ratio MRI in ex vivo mouse brain.
West KL, Kelm ND, Carson RP, Alexander DC, Gochberg DF, Does MD
(2018) Neuroimage 167: 366-371
MeSH Terms: Animals, Axons, Brain, Disease Models, Animal, Magnetic Resonance Imaging, Mice, Mice, Knockout, Microscopy, Electron, Myelin Sheath, White Matter
Show Abstract · Added March 5, 2020
This study aimed to experimentally evaluate a previously proposed MRI method for mapping axonal g-ratio (ratio of axon diameters, measured to the inner and outer boundary of myelin). MRI and electron microscopy were used to study excised and fixed brains of control mice and three mouse models of abnormal white matter. The results showed that g-ratio measured with MRI correlated with histological measures of myelinated axon g-ratio, but with a bias that is likely due to the presence of non-myelinated axons. The results also pointed to cases where the MRI g-ratio model simplifies to be primarily a function of total myelin content.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
A neutralizing antibody that blocks delivery of the enzymatic cargo of toxin TcdB into host cells.
Kroh HK, Chandrasekaran R, Zhang Z, Rosenthal K, Woods R, Jin X, Nyborg AC, Rainey GJ, Warrener P, Melnyk RA, Spiller BW, Lacy DB
(2018) J Biol Chem 293: 941-952
MeSH Terms: Antibodies, Monoclonal, Antibodies, Neutralizing, Bacterial Toxins, Caco-2 Cells, Clostridium difficile, Crystallography, X-Ray, Cytosol, Enterotoxins, Humans, Hydrogen-Ion Concentration, Microscopy, Electron, Rubidium, rac1 GTP-Binding Protein
Show Abstract · Added March 15, 2018
infection is the leading cause of hospital-acquired diarrhea and is mediated by the actions of two toxins, TcdA and TcdB. The toxins perturb host cell function through a multistep process of receptor binding, endocytosis, low pH-induced pore formation, and the translocation and delivery of an N-terminal glucosyltransferase domain that inactivates host GTPases. Infection studies with isogenic strains having defined toxin deletions have established TcdB as an important target for therapeutic development. Monoclonal antibodies that neutralize TcdB function have been shown to protect against infection in animal models and reduce recurrence in humans. Here, we report the mechanism of TcdB neutralization by PA41, a humanized monoclonal antibody capable of neutralizing TcdB from a diverse array of strains. Through a combination of structural, biochemical, and cell functional studies, involving X-ray crystallography and EM, we show that PA41 recognizes a single, highly conserved epitope on the TcdB glucosyltransferase domain and blocks productive translocation and delivery of the enzymatic cargo into the host cell. Our study reveals a unique mechanism of toxin neutralization by a monoclonal antibody, which involves targeting a process that is conserved across the large clostridial glucosylating toxins. The PA41 antibody described here provides a valuable tool for dissecting the mechanism of toxin pore formation and translocation across the endosomal membrane.
0 Communities
2 Members
0 Resources
13 MeSH Terms
Anatomically-specific intratubular and interstitial biominerals in the human renal medullo-papillary complex.
Chen L, Hsi RS, Yang F, Sherer BA, Stoller ML, Ho SP
(2017) PLoS One 12: e0187103
MeSH Terms: Humans, Kidney Medulla, Microscopy, Electron, Transmission, Minerals, Tomography, X-Ray Computed
Show Abstract · Added January 16, 2018
Limited information exists on the anatomically-specific early stage events leading to clinically detectable mineral aggregates in the renal papilla. In this study, quantitative multiscale correlative maps of structural, elemental and biochemical properties of whole medullo-papillary complexes from human kidneys were developed. Correlative maps of properties specific to the uriniferous and vascular tubules using high-resolution X-ray computed tomography, scanning and transmission electron microscopy, energy dispersive X-ray spectroscopy, and immunolocalization of noncollagenous proteins (NCPs) along with their association with anatomy specific biominerals were obtained. Results illustrated that intratubular spherical aggregates primarily form at the proximal regions distant from the papillary tip while interstitial spherical and fibrillar aggregates are distally located near the papillary tip. Biominerals at the papillary tip were closely localized with 10 to 50 μm diameter vasa recta immunolocalized for CD31 inside the medullo-papillary complex. Abundant NCPs known to regulate bone mineralization were localized within nanoparticles, forming early pathologic mineralized regions of the complex. Based on the physical association between vascular and urothelial tubules, results from light and electron microscopy techniques suggested that these NCPs could be delivered from vasculature to prompt calcification of the interstitial regions or they might be synthesized from local vascular smooth muscle cells after transdifferentiation into osteoblast-like phenotypes. In addition, results provided insights into the plausible temporal events that link the anatomically specific intratubular mineral aggregates with the interstitial biomineralization processes within the functional unit of the kidney.
0 Communities
1 Members
0 Resources
5 MeSH Terms