Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 93

Publication Record


The adaptor protein Bbc1 regulates localization of Wsp1 and Vrp1 during endocytic actin patch assembly.
MacQuarrie CD, Mangione MC, Carroll R, James M, Gould KL, Sirotkin V
(2019) J Cell Sci 132:
MeSH Terms: Actins, Microfilament Proteins, Neoplasm Proteins, Ribosomal Proteins, Schizosaccharomyces, Schizosaccharomyces pombe Proteins
Show Abstract · Added March 3, 2020
Arp2/3 complex-nucleated branched actin networks provide the key force necessary for endocytosis. The Arp2/3 complex is activated by nucleation-promoting factors including the Wiskott-Aldrich syndrome protein (Wsp1) and myosin-1 (Myo1). There are >40 known yeast endocytic proteins with distinct spatial and temporal localizations and functions; however, it is still unclear how these proteins work together to drive endocytosis. Here, we used quantitative live-cell imaging to determine the function of the uncharacterized protein Bbc1. We discovered that Myo1 interacts with and recruits Bbc1 to sites of endocytosis. Bbc1 competes with the verprolin Vrp1 for localization to patches and association with Myo1, thus releasing Vrp1 and its binding partner Wsp1 from Myo1. Normally Myo1 remains at the base of the endocytic invagination and Vrp1-Wsp1 internalizes with the endocytic vesicle. However, in the absence of Bbc1, a portion of Vrp1-Wsp1 remains with Myo1 at the base of the invagination, and endocytic structures internalize twice as far. We propose that Bbc1 disrupts a transient interaction of Myo1 with Vrp1 and Wsp1 and thereby limits Arp2/3 complex-mediated nucleation of actin branches at the plasma membrane.This article has an associated First Person interview with the first author of the paper.
© 2019. Published by The Company of Biologists Ltd.
0 Communities
1 Members
0 Resources
6 MeSH Terms
Muscle-specific stress fibers give rise to sarcomeres in cardiomyocytes.
Fenix AM, Neininger AC, Taneja N, Hyde K, Visetsouk MR, Garde RJ, Liu B, Nixon BR, Manalo AE, Becker JR, Crawley SW, Bader DM, Tyska MJ, Liu Q, Gutzman JH, Burnette DT
(2018) Elife 7:
MeSH Terms: Actin Cytoskeleton, Actins, Cell Line, Cell Line, Tumor, Formins, HeLa Cells, Humans, Microfilament Proteins, Microscopy, Confocal, Molecular Motor Proteins, Muscle Fibers, Skeletal, Myocytes, Cardiac, Myosin Heavy Chains, Nonmuscle Myosin Type IIB, RNA Interference, Sarcomeres, Stress Fibers
Show Abstract · Added March 27, 2019
The sarcomere is the contractile unit within cardiomyocytes driving heart muscle contraction. We sought to test the mechanisms regulating actin and myosin filament assembly during sarcomere formation. Therefore, we developed an assay using human cardiomyocytes to monitor sarcomere assembly. We report a population of muscle stress fibers, similar to actin arcs in non-muscle cells, which are essential sarcomere precursors. We show sarcomeric actin filaments arise directly from muscle stress fibers. This requires formins (e.g., FHOD3), non-muscle myosin IIA and non-muscle myosin IIB. Furthermore, we show short cardiac myosin II filaments grow to form ~1.5 μm long filaments that then 'stitch' together to form the stack of filaments at the core of the sarcomere (i.e., the A-band). A-band assembly is dependent on the proper organization of actin filaments and, as such, is also dependent on FHOD3 and myosin IIB. We use this experimental paradigm to present evidence for a unifying model of sarcomere assembly.
© 2018, Fenix et al.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Malformations in the Murine Kidney Caused by Loss of CENP-F Function.
Haley CO, Waters AM, Bader DM
(2019) Anat Rec (Hoboken) 302: 163-170
MeSH Terms: Acute Kidney Injury, Animals, Centromere, Chromosomal Proteins, Non-Histone, Hydronephrosis, Kidney, Kidney Function Tests, Mice, Mice, Knockout, Microfilament Proteins, Tumor Suppressor Proteins
Show Abstract · Added January 8, 2019
Centromere-binding protein F (CENP-F) is a large and complex protein shown to play critical roles in mitosis and various other interphase functions. Previous studies have shown that the disruption of CENP-F function leads to detrimental effects on human development. Still, it is important to note the lack of studies focusing on the effects that the loss of this essential protein may have on specific adult organs. In the current study, we used a novel global knockout murine model to analyze the potential consequences deletion of CENP-F has on adult kidney structure and function. We discovered several structural abnormalities including loss of ciliary structure, tubule dilation, and disruption of the glomerulus. Along with these structural irregularities, renal dysfunction was also detected suggesting hydronephrosis and acute kidney injury in these knockout organs. Importantly, this is the first study linking CENP-F to kidney disease and hopefully these data will serve as a platform to further investigate the molecular mechanisms disrupted in the kidney by the loss of CENP-F. Anat Rec, 302:163-170, 2019. © 2018 Wiley Periodicals, Inc.
© 2018 Wiley Periodicals, Inc.
1 Communities
0 Members
0 Resources
11 MeSH Terms
LCP1 preferentially binds clasped αMβ2 integrin and attenuates leukocyte adhesion under flow.
Tseng HY, Samarelli AV, Kammerer P, Scholze S, Ziegler T, Immler R, Zent R, Sperandio M, Sanders CR, Fässler R, Böttcher RT
(2018) J Cell Sci 131:
MeSH Terms: Animals, Cell Adhesion, Cell Membrane, Cytoplasm, HEK293 Cells, Humans, Leukocytes, Macrophage-1 Antigen, Mice, Mice, Inbred C57BL, Microfilament Proteins, Protein Binding, Protein Conformation, RAW 264.7 Cells
Show Abstract · Added November 21, 2018
Integrins are α/β heterodimers that interconvert between inactive and active states. In the active state the α/β cytoplasmic domains recruit integrin-activating proteins and separate the transmembrane and cytoplasmic (TMcyto) domains (unclasped TMcyto). Conversely, in the inactive state the α/β TMcyto domains bind integrin-inactivating proteins, resulting in the association of the TMcyto domains (clasped TMcyto). Here, we report the isolation of integrin cytoplasmic tail interactors using either lipid bicelle-incorporated integrin TMcyto domains (α5, αM, αIIb, β1, β2 and β3 integrin TMcyto) or a clasped, lipid bicelle-incorporated αMβ2 TMcyto. Among the proteins found to preferentially bind clasped rather than the isolated αM and β2 subunits was L-plastin (LCP1, also known as plastin-2), which binds to and maintains the inactive state of αMβ2 integrin and thereby regulates leukocyte adhesion to integrin ligands under flow. Our findings offer a global view on cytoplasmic proteins interacting with different integrins and provide evidence for the existence of conformation-specific integrin interactors.
© 2018. Published by The Company of Biologists Ltd.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Loss of CENP-F Results in Dilated Cardiomyopathy with Severe Disruption of Cardiac Myocyte Architecture.
Manalo A, Schroer AK, Fenix AM, Shancer Z, Coogan J, Brolsma T, Burnette DT, Merryman WD, Bader DM
(2018) Sci Rep 8: 7546
MeSH Terms: Animals, Cardiomyopathy, Dilated, Chromosomal Proteins, Non-Histone, Disease Models, Animal, Genetic Association Studies, Genetic Predisposition to Disease, Heart Failure, Humans, Intercellular Junctions, Loss of Function Mutation, Mice, Microfilament Proteins, Microtubules, Myocytes, Cardiac, Polymorphism, Single Nucleotide, Stroke Volume
Show Abstract · Added March 27, 2019
Centromere-binding protein F (CENP-F) is a very large and complex protein with many and varied binding partners including components of the microtubule network. Numerous CENP-F functions impacting diverse cellular behaviors have been identified. Importantly, emerging data have shown that CENP-F loss- or gain-of-function has critical effects on human development and disease. Still, it must be noted that data at the single cardiac myocyte level examining the impact of CENP-F loss-of-function on fundamental cellular behavior is missing. To address this gap in our knowledge, we analyzed basic cell structure and function in cardiac myocytes devoid of CENP-F. We found many diverse structural abnormalities including disruption of the microtubule network impacting critical characteristics of the cardiac myocyte. This is the first report linking microtubule network malfunction to cardiomyopathy. Importantly, we also present data demonstrating a direct link between a CENP-F single nucleotide polymorphism (snp) and human cardiac disease. In a proximate sense, these data examining CENP-F function explain the cellular basis underlying heart disease in this genetic model and, in a larger sense, they will hopefully provide a platform upon which the field can explore diverse cellular outcomes in wide-ranging areas of research on this critical protein.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Inverted formin 2 regulates intracellular trafficking, placentation, and pregnancy outcome.
Lamm KYB, Johnson ML, Baker Phillips J, Muntifering MB, James JM, Jones HN, Redline RW, Rokas A, Muglia LJ
(2018) Elife 7:
MeSH Terms: Animals, Cell Differentiation, Cell Movement, Female, Formins, Mice, Mice, Knockout, Microfilament Proteins, Placentation, Pregnancy, Pregnancy Outcome, Trophoblasts
Show Abstract · Added March 21, 2018
Healthy pregnancy depends on proper placentation-including proliferation, differentiation, and invasion of trophoblast cells-which, if impaired, causes placental ischemia resulting in intrauterine growth restriction and preeclampsia. Mechanisms regulating trophoblast invasion, however, are unknown. We report that reduction of ( alters intracellular trafficking and significantly impairs invasion in a model of human extravillous trophoblasts. Furthermore, global loss of in mice recapitulates maternal and fetal phenotypes of placental insufficiency. dams have reduced spiral artery numbers and late gestational hypertension with resolution following delivery. fetuses are growth restricted and demonstrate changes in umbilical artery Doppler consistent with poor placental perfusion and fetal distress. Loss of increases fetal vascular density in the placenta and dysregulates trophoblast expression of angiogenic factors. Our data support a critical regulatory role for in trophoblast invasion-a necessary process for placentation-representing a possible future target for improving placentation and fetal outcomes.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Impact of cordon-bleu expression on actin cytoskeleton architecture and dynamics.
Grega-Larson NE, Crawley SW, Tyska MJ
(2016) Cytoskeleton (Hoboken) 73: 670-679
MeSH Terms: Actin Cytoskeleton, Animals, Cell Line, Tumor, Cytoskeletal Proteins, Gene Expression Regulation, Mice, Microfilament Proteins, Microvilli, Proteins
Show Abstract · Added April 7, 2017
Cordon-bleu (COBL) is a multifunctional WASP-Homology 2 (WH2) domain-containing protein implicated in a wide variety of cellular functions ranging from dendritic arborization in neurons to the assembly of microvilli on the surface of transporting epithelial cells. In vitro biochemical studies suggest that COBL is capable of nucleating and severing actin filaments, among other activities. How the multiple activities of COBL observed in vitro contribute to its function in cells remains unclear. Here, we used live imaging to evaluate the impact of COBL expression on the actin cytoskeleton in cultured cells. We found that COBL induces the formation of dynamic linear actin structures throughout the cytosol. We also found that stabilizing these dynamic structures with the parallel actin-bundling protein espin slows down their turnover and enables the robust formation of self-supported protrusions on the dorsal cell surface. Super-resolution imaging revealed a global remodeling of the actin cytoskeleton in cells expressing these two factors. Taken together, these results provide insight as to how COBL contributes to the assembly of actin-based structures such as epithelial microvilli. © 2016 Wiley Periodicals, Inc.
© 2016 Wiley Periodicals, Inc.
1 Communities
1 Members
0 Resources
9 MeSH Terms
Cortactin promotes exosome secretion by controlling branched actin dynamics.
Sinha S, Hoshino D, Hong NH, Kirkbride KC, Grega-Larson NE, Seiki M, Tyska MJ, Weaver AM
(2016) J Cell Biol 214: 197-213
MeSH Terms: Actin-Related Protein 2-3 Complex, Actins, Biological Transport, Cell Line, Tumor, Cell Membrane, Cortactin, Exosomes, Humans, Microfilament Proteins, Models, Biological, Molecular Docking Simulation, Multivesicular Bodies, Phenotype, Protein Binding, Pseudopodia, RNA, Small Interfering, Tetraspanin 30, rab GTP-Binding Proteins
Show Abstract · Added April 7, 2017
Exosomes are extracellular vesicles that influence cellular behavior and enhance cancer aggressiveness by carrying bioactive molecules. The mechanisms that regulate exosome secretion are poorly understood. Here, we show that the actin cytoskeletal regulatory protein cortactin promotes exosome secretion. Knockdown or overexpression of cortactin in cancer cells leads to a respective decrease or increase in exosome secretion, without altering exosome cargo content. Live-cell imaging revealed that cortactin controls both trafficking and plasma membrane docking of multivesicular late endosomes (MVEs). Regulation of exosome secretion by cortactin requires binding to the branched actin nucleating Arp2/3 complex and to actin filaments. Furthermore, cortactin, Rab27a, and coronin 1b coordinately control stability of cortical actin MVE docking sites and exosome secretion. Functionally, the addition of purified exosomes to cortactin-knockdown cells rescued defects of those cells in serum-independent growth and invasion. These data suggest a model in which cortactin promotes exosome secretion by stabilizing cortical actin-rich MVE docking sites.
© 2016 Sinha et al.
1 Communities
2 Members
0 Resources
18 MeSH Terms
Loss of CENP-F results in distinct microtubule-related defects without chromosomal abnormalities.
Pfaltzgraff ER, Roth GM, Miller PM, Gintzig AG, Ohi R, Bader DM
(2016) Mol Biol Cell 27: 1990-9
MeSH Terms: Animals, Cell Cycle, Centromere, Chromosomal Proteins, Non-Histone, Chromosome Aberrations, Chromosome Segregation, Fibroblasts, Interphase, Kinetochores, Mice, Mice, Knockout, Microfilament Proteins, Microtubules, Mitosis, Protein Binding
Show Abstract · Added March 29, 2017
Microtubule (MT)-binding centromere protein F (CENP-F) was previously shown to play a role exclusively in chromosome segregation during cellular division. Many cell models of CENP-F depletion show a lag in the cell cycle and aneuploidy. Here, using our novel genetic deletion model, we show that CENP-F also regulates a broader range of cellular functions outside of cell division. We characterized CENP-F(+/+) and CENP-F(-/-) mouse embryonic fibroblasts (MEFs) and found drastic differences in multiple cellular functions during interphase, including cell migration, focal adhesion dynamics, and primary cilia formation. We discovered that CENP-F(-/-) MEFs have severely diminished MT dynamics, which underlies the phenotypes we describe. These data, combined with recent biochemical research demonstrating the strong binding of CENP-F to the MT network, support the conclusion that CENP-F is a powerful regulator of MT dynamics during interphase and affects heterogeneous cell functions.
© 2016 Pfaltzgraff et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
1 Communities
2 Members
0 Resources
15 MeSH Terms
Virus-mediated EpoR76E gene therapy preserves vision in a glaucoma model by modulating neuroinflammation and decreasing oxidative stress.
Hines-Beard J, Bond WS, Backstrom JR, Rex TS
(2016) J Neuroinflammation 13: 39
MeSH Terms: Animals, Calcium-Binding Proteins, Cholera Toxin, Cytokines, Dependovirus, Disease Models, Animal, Erythropoietin, Evoked Potentials, Visual, Fluorescein Angiography, Gene Expression Regulation, Genetic Therapy, Glaucoma, Ki-67 Antigen, Mice, Mice, Inbred DBA, Microfilament Proteins, Microglia, Oxidative Stress, Photic Stimulation, Retina, Transduction, Genetic
Show Abstract · Added April 2, 2019
BACKGROUND - Glaucoma is a complex neurodegeneration and a leading cause of blindness worldwide. Current therapeutic strategies, which are all directed towards lowering the intraocular pressure (IOP), do not stop progression of the disease. We have demonstrated that recombinant adeno-associated virus (rAAV) gene delivery of a form of erythropoietin with attenuated erythropoietic activity (EpoR76E) can preserve retinal ganglion cells, their axons, and vision without decreasing IOP. The goal of this study was to determine if modulation of neuroinflammation or oxidative stress played a role in the neuroprotective activity of EPO.R76E.
METHODS - Five-month-old DBA/2J mice were treated with either rAAV.EpoR76E or a control vector and collected at 8 months of age. Neuroprotection was assessed by quantification of axon transport and visual evoked potentials. Microglia number and morphology and cytokine and chemokine levels were quantified. Message levels of oxidative stress-related proteins were assessed.
RESULTS - Axon transport and visual evoked potentials were preserved in rAAV.EpoR76E-treated mice. The number of microglia was decreased in retinas from 8-month-old rAAV.EpoR76E-treated mice, but proliferation was unaffected. The blood-retina barrier was also unaffected by treatment. Levels of some pro-inflammatory cytokines were decreased in retinas from rAAV.EpoR76E-treated mice including IL-1, IL-12, IL-13, IL-17, CCL4, and CCL5. TNFα messenger RNA (mRNA) was increased in retinas from 8-month-old mice compared to 3-month-old controls regardless of treatment. Expression of several antioxidant proteins was increased in retinas of rAAV.EpoR76E-treated 8-month-old mice.
CONCLUSIONS - Treatment with rAAV.EpoR76E preserves vision in the DBA/2J model of glaucoma at least in part by decreasing infiltration of peripheral immune cells, modulating microglial reactivity, and decreasing oxidative stress.
0 Communities
1 Members
0 Resources
MeSH Terms