Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 161

Publication Record

Connections

A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-β Superfamily.
Korkut A, Zaidi S, Kanchi RS, Rao S, Gough NR, Schultz A, Li X, Lorenzi PL, Berger AC, Robertson G, Kwong LN, Datto M, Roszik J, Ling S, Ravikumar V, Manyam G, Rao A, Shelley S, Liu Y, Ju Z, Hansel D, de Velasco G, Pennathur A, Andersen JB, O'Rourke CJ, Ohshiro K, Jogunoori W, Nguyen BN, Li S, Osmanbeyoglu HU, Ajani JA, Mani SA, Houseman A, Wiznerowicz M, Chen J, Gu S, Ma W, Zhang J, Tong P, Cherniack AD, Deng C, Resar L, Cancer Genome Atlas Research Network, Weinstein JN, Mishra L, Akbani R
(2018) Cell Syst 7: 422-437.e7
MeSH Terms: Bone Morphogenetic Protein 5, DNA Methylation, Humans, MicroRNAs, Mutation Rate, Neoplasms, Receptor, Transforming Growth Factor-beta Type I, Signal Transduction, Smad Proteins, Transforming Growth Factor beta
Show Abstract · Added October 30, 2019
We present an integromic analysis of gene alterations that modulate transforming growth factor β (TGF-β)-Smad-mediated signaling in 9,125 tumor samples across 33 cancer types in The Cancer Genome Atlas (TCGA). Focusing on genes that encode mediators and regulators of TGF-β signaling, we found at least one genomic alteration (mutation, homozygous deletion, or amplification) in 39% of samples, with highest frequencies in gastrointestinal cancers. We identified mutation hotspots in genes that encode TGF-β ligands (BMP5), receptors (TGFBR2, AVCR2A, and BMPR2), and Smads (SMAD2 and SMAD4). Alterations in the TGF-β superfamily correlated positively with expression of metastasis-associated genes and with decreased survival. Correlation analyses showed the contributions of mutation, amplification, deletion, DNA methylation, and miRNA expression to transcriptional activity of TGF-β signaling in each cancer type. This study provides a broad molecular perspective relevant for future functional and therapeutic studies of the diverse cancer pathways mediated by the TGF-β superfamily.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
The Vasculature in Prediabetes.
Wasserman DH, Wang TJ, Brown NJ
(2018) Circ Res 122: 1135-1150
MeSH Terms: Angiotensin-Converting Enzyme Inhibitors, Animals, Blood Vessels, Cardiovascular Diseases, Combined Modality Therapy, Diabetes Mellitus, Type 2, Diet, Reducing, Disease Progression, Endothelium, Vascular, Extracellular Matrix, Fatty Acids, Nonesterified, Fibrinolysis, Glucose, Humans, Hyperglycemia, Hypoglycemic Agents, Inflammation, Insulin Resistance, Life Style, Metabolic Syndrome, Mice, MicroRNAs, Microcirculation, Muscle, Skeletal, Obesity, Prediabetic State, Risk, Weight Loss
Show Abstract · Added March 26, 2019
The frequency of prediabetes is increasing as the prevalence of obesity rises worldwide. In prediabetes, hyperglycemia, insulin resistance, and inflammation and metabolic derangements associated with concomitant obesity cause endothelial vasodilator and fibrinolytic dysfunction, leading to increased risk of cardiovascular and renal disease. Importantly, the microvasculature affects insulin sensitivity by affecting the delivery of insulin and glucose to skeletal muscle; thus, endothelial dysfunction and extracellular matrix remodeling promote the progression from prediabetes to diabetes mellitus. Weight loss is the mainstay of treatment in prediabetes, but therapies that improved endothelial function and vasodilation may not only prevent cardiovascular disease but also slow progression to diabetes mellitus.
© 2018 American Heart Association, Inc.
1 Communities
0 Members
0 Resources
28 MeSH Terms
Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation.
Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN, Kamińska B, Huelsken J, Omberg L, Gevaert O, Colaprico A, Czerwińska P, Mazurek S, Mishra L, Heyn H, Krasnitz A, Godwin AK, Lazar AJ, Cancer Genome Atlas Research Network, Stuart JM, Hoadley KA, Laird PW, Noushmehr H, Wiznerowicz M
(2018) Cell 173: 338-354.e15
MeSH Terms: Carcinogenesis, Cell Dedifferentiation, DNA Methylation, Databases, Genetic, Epigenesis, Genetic, Humans, Machine Learning, MicroRNAs, Neoplasm Metastasis, Neoplasms, Stem Cells, Transcriptome, Tumor Microenvironment
Show Abstract · Added October 30, 2019
Cancer progression involves the gradual loss of a differentiated phenotype and acquisition of progenitor and stem-cell-like features. Here, we provide novel stemness indices for assessing the degree of oncogenic dedifferentiation. We used an innovative one-class logistic regression (OCLR) machine-learning algorithm to extract transcriptomic and epigenetic feature sets derived from non-transformed pluripotent stem cells and their differentiated progeny. Using OCLR, we were able to identify previously undiscovered biological mechanisms associated with the dedifferentiated oncogenic state. Analyses of the tumor microenvironment revealed unanticipated correlation of cancer stemness with immune checkpoint expression and infiltrating immune cells. We found that the dedifferentiated oncogenic phenotype was generally most prominent in metastatic tumors. Application of our stemness indices to single-cell data revealed patterns of intra-tumor molecular heterogeneity. Finally, the indices allowed for the identification of novel targets and possible targeted therapies aimed at tumor differentiation.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer.
Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, Shen R, Taylor AM, Cherniack AD, Thorsson V, Akbani R, Bowlby R, Wong CK, Wiznerowicz M, Sanchez-Vega F, Robertson AG, Schneider BG, Lawrence MS, Noushmehr H, Malta TM, Cancer Genome Atlas Network, Stuart JM, Benz CC, Laird PW
(2018) Cell 173: 291-304.e6
MeSH Terms: Aneuploidy, Chromosomes, Cluster Analysis, CpG Islands, DNA Methylation, Databases, Factual, Humans, MicroRNAs, Mutation, Neoplasm Proteins, Neoplasms, RNA, Messenger
Show Abstract · Added October 30, 2019
We conducted comprehensive integrative molecular analyses of the complete set of tumors in The Cancer Genome Atlas (TCGA), consisting of approximately 10,000 specimens and representing 33 types of cancer. We performed molecular clustering using data on chromosome-arm-level aneuploidy, DNA hypermethylation, mRNA, and miRNA expression levels and reverse-phase protein arrays, of which all, except for aneuploidy, revealed clustering primarily organized by histology, tissue type, or anatomic origin. The influence of cell type was evident in DNA-methylation-based clustering, even after excluding sites with known preexisting tissue-type-specific methylation. Integrative clustering further emphasized the dominant role of cell-of-origin patterns. Molecular similarities among histologically or anatomically related cancer types provide a basis for focused pan-cancer analyses, such as pan-gastrointestinal, pan-gynecological, pan-kidney, and pan-squamous cancers, and those related by stemness features, which in turn may inform strategies for future therapeutic development.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Intra-individual variation of miRNA expression levels in human plasma samples.
Wu J, Cai H, Xiang YB, Matthews CE, Ye F, Zheng W, Cai Q, Shu XO
(2018) Biomarkers 23: 339-346
MeSH Terms: Biomarkers, Circulating MicroRNA, Healthy Volunteers, Humans, MicroRNAs, RNA Stability, Time Factors
Show Abstract · Added April 3, 2018
BACKGROUND - Circulating miRNAs as potential non-invasive biomarkers for disease risk assessment and cancer early diagnosis have attracted increasing interest. Little information, however, is available regarding the intra-individual variation of circulating miRNA levels.
METHODS - We measured expression levels of a panel of 800 miRNAs in repeated plasma samples from 51 healthy individuals that were collected 6 to 12 months apart and evaluated the intra-individual variation by the intra-class correlation coefficient (ICC).
RESULTS - After background correction, a total of 185 miRNAs were detected in at least 10% of the plasma samples, with 69 and 28 miRNAs being detected in 50% and 90% of samples, respectively. The median ICC was 0.46 for these 185 miRNAs. Among them, 41% (75 miRNAs) had an ICC ≥ 0.5, and 23% (42 miRNAs) had an ICC ≥ 0.6. The ICC is higher for miRNAs with higher expression levels or higher detection rates, when compared to those with lower expression levels or lower detection rates.
CONCLUSIONS - These results suggest that common circulating miRNAs are stable over a relatively long period and can serve as reliable biomarkers for epidemiological and clinical research.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Gene and MicroRNA Perturbations of Cellular Response to Pemetrexed Implicate Biological Networks and Enable Imputation of Response in Lung Adenocarcinoma.
Gamazon ER, Trendowski MR, Wen Y, Wing C, Delaney SM, Huh W, Wong S, Cox NJ, Dolan ME
(2018) Sci Rep 8: 733
MeSH Terms: Adenocarcinoma, Adenocarcinoma of Lung, Antineoplastic Agents, Cell Line, Tumor, Drug Resistance, Epithelial Cells, Gene Expression Profiling, Gene Expression Regulation, Humans, Lung Neoplasms, Lymphocytes, MicroRNAs, Models, Biological, Pemetrexed
Show Abstract · Added March 15, 2018
Pemetrexed is indicated for non-small cell lung carcinoma and mesothelioma, but often has limited efficacy due to drug resistance. To probe the molecular mechanisms underlying chemotherapeutic response, we performed mRNA and microRNA (miRNA) expression profiling of pemetrexed treated and untreated lymphoblastoid cell lines (LCLs) and applied a hierarchical Bayesian method. We identified genetic variation associated with gene expression in human lung tissue for the most significant differentially expressed genes (Benjamini-Hochberg [BH] adjusted p < 0.05) using the Genotype-Tissue Expression data and found evidence for their clinical relevance using integrated molecular profiling and lung adenocarcinoma survival data from The Cancer Genome Atlas project. We identified 39 miRNAs with significant differential expression (BH adjusted p < 0.05) in LCLs. We developed a gene expression based imputation model of drug sensitivity, quantified its prediction performance, and found a significant correlation of the imputed phenotype generated from expression data with survival time in lung adenocarcinoma patients. Differentially expressed genes (MTHFD2 and SUFU) that are putative targets of differentially expressed miRNAs also showed differential perturbation in A549 fusion lung tumor cells with further replication in A549 cells. Our study suggests pemetrexed may be used in combination with agents that target miRNAs to increase its cytotoxicity.
0 Communities
2 Members
0 Resources
14 MeSH Terms
Müller glial microRNAs are required for the maintenance of glial homeostasis and retinal architecture.
Wohl SG, Jorstad NL, Levine EM, Reh TA
(2017) Nat Commun 8: 1603
MeSH Terms: 3T3 Cells, Animals, Cell Movement, Cells, Cultured, DEAD-box RNA Helicases, Ependymoglial Cells, Gene Expression Profiling, Homeostasis, Mice, Mice, Knockout, Mice, Transgenic, MicroRNAs, Microscopy, Confocal, Neuroglia, Retina, Ribonuclease III
Show Abstract · Added February 14, 2018
To better understand the roles of microRNAs in glial function, we used a conditional deletion of Dicer1 (Dicer-CKO) in retinal Müller glia (MG). Dicer1 deletion from the MG leads to an abnormal migration of the cells as early as 1 month after the deletion. By 6 months after Dicer1 deletion, the MG form large aggregations and severely disrupt normal retinal architecture and function. The most highly upregulated gene in the Dicer-CKO MG is the proteoglycan Brevican (Bcan) and overexpression of Bcan results in similar aggregations of the MG in wild-type retina. One potential microRNA that regulates Bcan is miR-9, and overexpression of miR-9 can partly rescue the effects of Dicer1 deletion on the MG phenotype. We also find that MG from retinitis pigmentosa patients display an increase in Brevican immunoreactivity at sites of MG aggregation, linking the retinal remodeling that occurs in chronic disease with microRNAs.
0 Communities
1 Members
0 Resources
16 MeSH Terms
lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/β-catenin signaling.
Lu Y, Zhao X, Liu Q, Li C, Graves-Deal R, Cao Z, Singh B, Franklin JL, Wang J, Hu H, Wei T, Yang M, Yeatman TJ, Lee E, Saito-Diaz K, Hinger S, Patton JG, Chung CH, Emmrich S, Klusmann JH, Fan D, Coffey RJ
(2017) Nat Med 23: 1331-1341
MeSH Terms: Antineoplastic Agents, Immunological, Cell Line, Tumor, Cetuximab, Disease Progression, Drug Resistance, Neoplasm, Epigenesis, Genetic, GATA6 Transcription Factor, Humans, MicroRNAs, RNA, Long Noncoding, Signal Transduction, Wnt Proteins, beta Catenin
Show Abstract · Added April 3, 2018
De novo and acquired resistance, which are largely attributed to genetic alterations, are barriers to effective anti-epidermal-growth-factor-receptor (EGFR) therapy. To generate cetuximab-resistant cells, we exposed cetuximab-sensitive colorectal cancer cells to cetuximab in three-dimensional culture. Using whole-exome sequencing and transcriptional profiling, we found that the long non-coding RNA MIR100HG and two embedded microRNAs, miR-100 and miR-125b, were overexpressed in the absence of known genetic events linked to cetuximab resistance. MIR100HG, miR-100 and miR-125b overexpression was also observed in cetuximab-resistant colorectal cancer and head and neck squamous cell cancer cell lines and in tumors from colorectal cancer patients that progressed on cetuximab. miR-100 and miR-125b coordinately repressed five Wnt/β-catenin negative regulators, resulting in increased Wnt signaling, and Wnt inhibition in cetuximab-resistant cells restored cetuximab responsiveness. Our results describe a double-negative feedback loop between MIR100HG and the transcription factor GATA6, whereby GATA6 represses MIR100HG, but this repression is relieved by miR-125b targeting of GATA6. These findings identify a clinically actionable, epigenetic cause of cetuximab resistance.
0 Communities
2 Members
0 Resources
MeSH Terms
Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer.
Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, Hinoue T, Laird PW, Hoadley KA, Akbani R, Castro MAA, Gibb EA, Kanchi RS, Gordenin DA, Shukla SA, Sanchez-Vega F, Hansel DE, Czerniak BA, Reuter VE, Su X, de Sa Carvalho B, Chagas VS, Mungall KL, Sadeghi S, Pedamallu CS, Lu Y, Klimczak LJ, Zhang J, Choo C, Ojesina AI, Bullman S, Leraas KM, Lichtenberg TM, Wu CJ, Schultz N, Getz G, Meyerson M, Mills GB, McConkey DJ, TCGA Research Network, Weinstein JN, Kwiatkowski DJ, Lerner SP
(2017) Cell 171: 540-556.e25
MeSH Terms: Aged, Cluster Analysis, DNA Methylation, Humans, MicroRNAs, Middle Aged, Muscle, Smooth, RNA, Long Noncoding, Survival Analysis, Urinary Bladder, Urinary Bladder Neoplasms
Show Abstract · Added October 30, 2019
We report a comprehensive analysis of 412 muscle-invasive bladder cancers characterized by multiple TCGA analytical platforms. Fifty-eight genes were significantly mutated, and the overall mutational load was associated with APOBEC-signature mutagenesis. Clustering by mutation signature identified a high-mutation subset with 75% 5-year survival. mRNA expression clustering refined prior clustering analyses and identified a poor-survival "neuronal" subtype in which the majority of tumors lacked small cell or neuroendocrine histology. Clustering by mRNA, long non-coding RNA (lncRNA), and miRNA expression converged to identify subsets with differential epithelial-mesenchymal transition status, carcinoma in situ scores, histologic features, and survival. Our analyses identified 5 expression subtypes that may stratify response to different treatments.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Second messenger signaling mechanisms of the brown adipocyte thermogenic program: an integrative perspective.
Shi F, Collins S
(2017) Horm Mol Biol Clin Investig 31:
MeSH Terms: Adipocytes, Beige, Adipocytes, Brown, Animals, Cyclic AMP-Dependent Protein Kinases, Cyclic GMP-Dependent Protein Kinases, Energy Metabolism, Gene Expression Regulation, Humans, Intracellular Space, Mechanistic Target of Rapamycin Complex 1, MicroRNAs, Natriuretic Agents, RNA, Long Noncoding, Receptors, Adrenergic, beta, Second Messenger Systems, Signal Transduction, Thermogenesis, Uncoupling Protein 1
Show Abstract · Added September 26, 2018
β-adrenergic receptors (βARs) are well established for conveying the signal from catecholamines to adipocytes. Acting through the second messenger cyclic adenosine monophosphate (cAMP) they stimulate lipolysis and also increase the activity of brown adipocytes and the 'browning' of adipocytes within white fat depots (so-called 'brite' or 'beige' adipocytes). Brown adipose tissue mitochondria are enriched with uncoupling protein 1 (UCP1), which is a regulated proton channel that allows the dissipation of chemical energy in the form of heat. The discovery of functional brown adipocytes in humans and inducible brown-like ('beige' or 'brite') adipocytes in rodents have suggested that recruitment and activation of these thermogenic adipocytes could be a promising strategy to increase energy expenditure for obesity therapy. More recently, the cardiac natriuretic peptides and their second messenger cyclic guanosine monophosphate (cGMP) have gained attention as a parallel signaling pathway in adipocytes, with some unique features. In this review, we begin with some important historical work that touches upon the regulation of brown adipocyte development and physiology. We then provide a synopsis of some recent advances in the signaling cascades from β-adrenergic agonists and natriuretic peptides to drive thermogenic gene expression in the adipocytes and how these two pathways converge at a number of unexpected points. Finally, moving from the physiologic hormonal signaling, we discuss yet another level of control downstream of these signals: the growing appreciation of the emerging roles of non-coding RNAs as important regulators of brown adipocyte formation and function. In this review, we discuss new developments in our understanding of the signaling mechanisms and factors including new secreted proteins and novel non-coding RNAs that control the function as well as the plasticity of the brown/beige adipose tissue as it responds to the energy needs and environmental conditions of the organism.
0 Communities
1 Members
0 Resources
MeSH Terms