Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 1742

Publication Record

Connections

The scaffold protein p62 regulates adaptive thermogenesis through ATF2 nuclear target activation.
Fischer K, Fenzl A, Liu D, Dyar KA, Kleinert M, Brielmeier M, Clemmensen C, Fedl A, Finan B, Gessner A, Jastroch M, Huang J, Keipert S, Klingenspor M, Brüning JC, Kneilling M, Maier FC, Othman AE, Pichler BJ, Pramme-Steinwachs I, Sachs S, Scheideler A, Thaiss WM, Uhlenhaut H, Ussar S, Woods SC, Zorn J, Stemmer K, Collins S, Diaz-Meco M, Moscat J, Tschöp MH, Müller TD
(2020) Nat Commun 11: 2306
MeSH Terms: Activating Transcription Factor 2, Adipogenesis, Adipose Tissue, Brown, Adipose Tissue, White, Animals, Cell Nucleus, Magnetic Resonance Imaging, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Obesity, Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha, Positron Emission Tomography Computed Tomography, Protein Binding, Sequestosome-1 Protein, Uncoupling Protein 1, p38 Mitogen-Activated Protein Kinases
Show Abstract · Added July 22, 2020
During β-adrenergic stimulation of brown adipose tissue (BAT), p38 phosphorylates the activating transcription factor 2 (ATF2) which then translocates to the nucleus to activate the expression of Ucp1 and Pgc-1α. The mechanisms underlying ATF2 target activation are unknown. Here we demonstrate that p62 (Sqstm1) binds to ATF2 to orchestrate activation of the Ucp1 enhancer and Pgc-1α promoter. P62 mice show reduced expression of Ucp1 and Pgc-1α with impaired ATF2 genomic binding. Modulation of Ucp1 and Pgc-1α expression through p62 regulation of ATF2 signaling is demonstrated in vitro and in vivo in p62 mice, global p62 and Ucp1-Cre p62 mice. BAT dysfunction resulting from p62 deficiency is manifest after birth and obesity subsequently develops despite normal food intake, intestinal nutrient absorption and locomotor activity. In summary, our data identify p62 as a master regulator of BAT function in that it controls the Ucp1 pathway through regulation of ATF2 genomic binding.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Biased M receptor-positive allosteric modulators reveal role of phospholipase D in M-dependent rodent cortical plasticity.
Moran SP, Xiang Z, Doyle CA, Maksymetz J, Lv X, Faltin S, Fisher NM, Niswender CM, Rook JM, Lindsley CW, Conn PJ
(2019) Sci Signal 12:
MeSH Terms: Allosteric Site, Animals, CHO Cells, Calcium, Cerebral Cortex, Cognition, Cricetinae, Cricetulus, Electrophysiology, Female, Humans, Long-Term Synaptic Depression, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Neuronal Plasticity, Phospholipase D, Prefrontal Cortex, Receptor, Muscarinic M1, Signal Transduction, Type C Phospholipases
Show Abstract · Added March 3, 2020
Highly selective, positive allosteric modulators (PAMs) of the M subtype of muscarinic acetylcholine receptor have emerged as an exciting new approach to potentially improve cognitive function in patients suffering from Alzheimer's disease and schizophrenia. Discovery programs have produced a structurally diverse range of M receptor PAMs with distinct pharmacological properties, including different extents of agonist activity and differences in signal bias. This includes biased M receptor PAMs that can potentiate coupling of the receptor to activation of phospholipase C (PLC) but not phospholipase D (PLD). However, little is known about the role of PLD in M receptor signaling in native systems, and it is not clear whether biased M PAMs display differences in modulating M-mediated responses in native tissue. Using PLD inhibitors and PLD knockout mice, we showed that PLD was necessary for the induction of M-dependent long-term depression (LTD) in the prefrontal cortex (PFC). Furthermore, biased M PAMs that did not couple to PLD not only failed to potentiate orthosteric agonist-induced LTD but also blocked M-dependent LTD in the PFC. In contrast, biased and nonbiased M PAMs acted similarly in potentiating M-dependent electrophysiological responses that were PLD independent. These findings demonstrate that PLD plays a critical role in the ability of M PAMs to modulate certain central nervous system (CNS) functions and that biased M PAMs function differently in brain regions implicated in cognition.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
2 Members
0 Resources
22 MeSH Terms
Sox6 as a new modulator of renin expression in the kidney.
Saleem M, Hodgkinson CP, Xiao L, Gimenez-Bastida JA, Rasmussen ML, Foss J, Payne AJ, Mirotsou M, Gama V, Dzau VJ, Gomez JA
(2020) Am J Physiol Renal Physiol 318: F285-F297
MeSH Terms: Animals, Arterioles, Blood Pressure, Cell Differentiation, Cell Proliferation, Cells, Cultured, Diet, Sodium-Restricted, Diuretics, Furosemide, Gene Expression Regulation, Juxtaglomerular Apparatus, Male, Mesenchymal Stem Cells, Mice, Inbred C57BL, Mice, Knockout, Muscle, Smooth, Vascular, Myocytes, Smooth Muscle, Renin, SOXD Transcription Factors, Signal Transduction
Show Abstract · Added August 24, 2020
Juxtaglomerular (JG) cells, major sources of renin, differentiate from metanephric mesenchymal cells that give rise to JG cells or a subset of smooth muscle cells of the renal afferent arteriole. During periods of dehydration and salt deprivation, renal mesenchymal stromal cells (MSCs) differentiate from JG cells. JG cells undergo expansion and smooth muscle cells redifferentiate to express renin along the afferent arteriole. Gene expression profiling comparing resident renal MSCs with JG cells indicates that the transcription factor Sox6 is highly expressed in JG cells in the adult kidney. In vitro, loss of Sox6 expression reduces differentiation of renal MSCs to renin-producing cells. In vivo, Sox6 expression is upregulated after a low-Na diet and furosemide. Importantly, knockout of Sox6 in Ren1d+ cells halts the increase in renin-expressing cells normally seen during a low-Na diet and furosemide as well as the typical increase in renin. Furthermore, Sox6 ablation in renin-expressing cells halts the recruitment of smooth muscle cells along the afferent arteriole, which normally express renin under these conditions. These results support a previously undefined role for Sox6 in renin expression.
0 Communities
1 Members
0 Resources
MeSH Terms
Modified sites and functional consequences of 4-oxo-2-nonenal adducts in HDL that are elevated in familial hypercholesterolemia.
May-Zhang LS, Yermalitsky V, Melchior JT, Morris J, Tallman KA, Borja MS, Pleasent T, Amarnath V, Song W, Yancey PG, Davidson WS, Linton MF, Davies SS
(2019) J Biol Chem 294: 19022-19033
MeSH Terms: Aldehydes, Animals, Apolipoprotein A-I, Atherosclerosis, Cells, Cultured, Female, Humans, Hyperlipoproteinemia Type II, Lipoproteins, HDL, Lysine, Male, Mice, Mice, Inbred C57BL, Mice, Knockout
Show Abstract · Added November 13, 2019
The lipid aldehyde 4-oxo-2-nonenal (ONE) is a highly reactive protein crosslinker derived from peroxidation of n-6 polyunsaturated fatty acids and generated together with 4-hydroxynonenal (HNE). Lipid peroxidation product-mediated crosslinking of proteins in high-density lipoprotein (HDL) causes HDL dysfunction and contributes to atherogenesis. Although HNE is relatively well-studied, the role of ONE in atherosclerosis and in modifying HDL is unknown. Here, we found that individuals with familial hypercholesterolemia (FH) had significantly higher ONE-ketoamide (lysine) adducts in HDL (54.6 ± 33.8 pmol/mg) than healthy controls (15.3 ± 5.6 pmol/mg). ONE crosslinked apolipoprotein A-I (apoA-I) on HDL at a concentration of > 3 mol ONE per 10 mol apoA-I (0.3 eq), which was 100-fold lower than HNE, but comparable to the potent protein crosslinker isolevuglandin. ONE-modified HDL partially inhibited HDL's ability to protect against lipopolysaccharide (LPS)-induced tumor necrosis factor α (TNFα) and interleukin-1β (IL-1β) gene expression in murine macrophages. At 3 eq, ONE dramatically decreased apoA-I exchange from HDL, from ∼46.5 to ∼18.4% ( < 0.001). Surprisingly, ONE modification of HDL or apoA-I did not alter macrophage cholesterol efflux capacity. LC-MS/MS analysis revealed that Lys-12, Lys-23, Lys-96, and Lys-226 in apoA-I are modified by ONE ketoamide adducts. Compared with other dicarbonyl scavengers, pentylpyridoxamine (PPM) most efficaciously blocked ONE-induced protein crosslinking in HDL and also prevented HDL dysfunction in an model of inflammation. Our findings show that ONE-HDL adducts cause HDL dysfunction and are elevated in individuals with FH who have severe hypercholesterolemia.
© 2019 May-Zhang et al.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Metabolic effects of skeletal muscle-specific deletion of beta-arrestin-1 and -2 in mice.
Meister J, Bone DBJ, Godlewski G, Liu Z, Lee RJ, Vishnivetskiy SA, Gurevich VV, Springer D, Kunos G, Wess J
(2019) PLoS Genet 15: e1008424
MeSH Terms: Animals, Diabetes Mellitus, Type 2, Diet, High-Fat, Disease Models, Animal, Glucose, Glucose Clamp Technique, Glycogen, Humans, Insulin, Insulin Resistance, Male, Mice, Mice, Knockout, Muscle, Skeletal, Obesity, Signal Transduction, beta-Arrestin 1, beta-Arrestin 2
Show Abstract · Added March 18, 2020
Type 2 diabetes (T2D) has become a major health problem worldwide. Skeletal muscle (SKM) is the key tissue for whole-body glucose disposal and utilization. New drugs aimed at improving insulin sensitivity of SKM would greatly expand available therapeutic options. β-arrestin-1 and -2 (Barr1 and Barr2, respectively) are two intracellular proteins best known for their ability to mediate the desensitization and internalization of G protein-coupled receptors (GPCRs). Recent studies suggest that Barr1 and Barr2 regulate several important metabolic functions including insulin release and hepatic glucose production. Since SKM expresses many GPCRs, including the metabolically important β2-adrenergic receptor, the goal of this study was to examine the potential roles of Barr1 and Barr2 in regulating SKM and whole-body glucose metabolism. Using SKM-specific knockout (KO) mouse lines, we showed that the loss of SKM Barr2, but not of SKM Barr1, resulted in mild improvements in glucose tolerance in diet-induced obese mice. SKM-specific Barr1- and Barr2-KO mice did not show any significant differences in exercise performance. However, lack of SKM Barr2 led to increased glycogen breakdown following a treadmill exercise challenge. Interestingly, mice that lacked both Barr1 and Barr2 in SKM showed no significant metabolic phenotypes. Thus, somewhat surprisingly, our data indicate that SKM β-arrestins play only rather subtle roles (SKM Barr2) in regulating whole-body glucose homeostasis and SKM insulin sensitivity.
0 Communities
1 Members
0 Resources
MeSH Terms
Developmentally regulated KCC2 phosphorylation is essential for dynamic GABA-mediated inhibition and survival.
Watanabe M, Zhang J, Mansuri MS, Duan J, Karimy JK, Delpire E, Alper SL, Lifton RP, Fukuda A, Kahle KT
(2019) Sci Signal 12:
MeSH Terms: Animals, Animals, Newborn, Binding Sites, Cells, Cultured, Central Nervous System, Chlorides, Gene Expression Regulation, Developmental, Male, Mice, 129 Strain, Mice, Inbred C57BL, Mice, Knockout, Neurons, Phosphorylation, Signal Transduction, Symporters, gamma-Aminobutyric Acid
Show Abstract · Added March 18, 2020
Despite its importance for γ-aminobutyric acid (GABA) inhibition and involvement in neurodevelopmental disease, the regulatory mechanisms of the K/Cl cotransporter KCC2 (encoded by ) during maturation of the central nervous system (CNS) are not entirely understood. Here, we applied quantitative phosphoproteomics to systematically map sites of KCC2 phosphorylation during CNS development in the mouse. KCC2 phosphorylation at Thr and Thr, which inhibits KCC2 activity, underwent dephosphorylation in parallel with the GABA excitatory-inhibitory sequence in vivo. Knockin mice expressing the homozygous phosphomimetic KCC2 mutations T906E/T1007E ( ), which prevented the normal developmentally regulated dephosphorylation of these sites, exhibited early postnatal death from respiratory arrest and a marked absence of cervical spinal neuron respiratory discharges. mice also displayed disrupted lumbar spinal neuron locomotor rhythmogenesis and touch-evoked status epilepticus associated with markedly impaired KCC2-dependent Cl extrusion. These data identify a previously unknown phosphorylation-dependent KCC2 regulatory mechanism during CNS development that is essential for dynamic GABA-mediated inhibition and survival.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
1 Members
0 Resources
16 MeSH Terms
IL-10-producing B cells are enriched in murine pericardial adipose tissues and ameliorate the outcome of acute myocardial infarction.
Wu L, Dalal R, Cao CD, Postoak JL, Yang G, Zhang Q, Wang Z, Lal H, Van Kaer L
(2019) Proc Natl Acad Sci U S A 116: 21673-21684
MeSH Terms: Adipose Tissue, Animals, B-Lymphocytes, Chemokine CXCL13, Female, Inflammation, Interleukin-10, Interleukin-33, Lymphocyte Count, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Myocardial Infarction, Pericardium, Regeneration
Show Abstract · Added March 3, 2020
Acute myocardial infarction (MI) provokes an inflammatory response in the heart that removes damaged tissues to facilitate tissue repair/regeneration. However, overactive and prolonged inflammation compromises healing, which may be counteracted by antiinflammatory mechanisms. A key regulatory factor in an inflammatory response is the antiinflammatory cytokine IL-10, which can be produced by a number of immune cells, including subsets of B lymphocytes. Here, we investigated IL-10-producing B cells in pericardial adipose tissues (PATs) and their role in the healing process following acute MI in mice. We found that IL-10-producing B cells were enriched in PATs compared to other adipose depots throughout the body, with the majority of them bearing a surface phenotype consistent with CD5 B-1a cells (CD5 B cells). These cells were detected early in life, maintained a steady presence during adulthood, and resided in fat-associated lymphoid clusters. The cytokine IL-33 and the chemokine CXCL13 were preferentially expressed in PATs and contributed to the enrichment of IL-10-producing CD5 B cells. Following acute MI, the pool of CD5 B cells was expanded in PATs. These cells accumulated in the infarcted heart during the resolution of MI-induced inflammation. B cell-specific deletion of IL-10 worsened cardiac function, exacerbated myocardial injury, and delayed resolution of inflammation following acute MI. These results revealed enrichment of IL-10-producing B cells in PATs and a significant contribution of these cells to the antiinflammatory processes that terminate MI-induced inflammation. Together, these findings have identified IL-10-producing B cells as therapeutic targets to improve the outcome of MI.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Proximal tubule ATR regulates DNA repair to prevent maladaptive renal injury responses.
Kishi S, Brooks CR, Taguchi K, Ichimura T, Mori Y, Akinfolarin A, Gupta N, Galichon P, Elias BC, Suzuki T, Wang Q, Gewin L, Morizane R, Bonventre JV
(2019) J Clin Invest 129: 4797-4816
MeSH Terms: Animals, Ataxia Telangiectasia Mutated Proteins, DNA Damage, DNA Repair, Disease Models, Animal, Female, Fibrosis, Humans, Kidney Diseases, Kidney Tubules, Proximal, Male, Mice, Mice, Knockout, Organoids
Show Abstract · Added March 18, 2020
Maladaptive proximal tubule (PT) repair has been implicated in kidney fibrosis through induction of cell-cycle arrest at G2/M. We explored the relative importance of the PT DNA damage response (DDR) in kidney fibrosis by genetically inactivating ataxia telangiectasia and Rad3-related (ATR), which is a sensor and upstream initiator of the DDR. In human chronic kidney disease, ATR expression inversely correlates with DNA damage. ATR was upregulated in approximately 70% of Lotus tetragonolobus lectin-positive (LTL+) PT cells in cisplatin-exposed human kidney organoids. Inhibition of ATR resulted in greater PT cell injury in organoids and cultured PT cells. PT-specific Atr-knockout (ATRRPTC-/-) mice exhibited greater kidney function impairment, DNA damage, and fibrosis than did WT mice in response to kidney injury induced by either cisplatin, bilateral ischemia-reperfusion, or unilateral ureteral obstruction. ATRRPTC-/- mice had more cells in the G2/M phase after injury than did WT mice after similar treatments. In conclusion, PT ATR activation is a key component of the DDR, which confers a protective effect mitigating the maladaptive repair and consequent fibrosis that follow kidney injury.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Loss of myosin Vb promotes apical bulk endocytosis in neonatal enterocytes.
Engevik AC, Kaji I, Postema MM, Faust JJ, Meyer AR, Williams JA, Fitz GN, Tyska MJ, Wilson JM, Goldenring JR
(2019) J Cell Biol 218: 3647-3662
MeSH Terms: Animals, Endocytosis, Enterocytes, Mice, Mice, Knockout, Myosin Type V
Show Abstract · Added October 25, 2019
In patients with inactivating mutations in myosin Vb (Myo5B), enterocytes show large inclusions lined by microvilli. The origin of inclusions in small-intestinal enterocytes in microvillus inclusion disease is currently unclear. We postulated that inclusions in Myo5b KO mouse enterocytes form through invagination of the apical brush border membrane. 70-kD FITC-dextran added apically to Myo5b KO intestinal explants accumulated in intracellular inclusions. Live imaging of Myo5b KO-derived enteroids confirmed the formation of inclusions from the apical membrane. Treatment of intestinal explants and enteroids with Dyngo resulted in accumulation of inclusions at the apical membrane. Inclusions in Myo5b KO enterocytes contained VAMP4 and Pacsin 2 (Syndapin 2). Myo5b;Pacsin 2 double-KO mice showed a significant decrease in inclusion formation. Our results suggest that apical bulk endocytosis in Myo5b KO enterocytes resembles activity-dependent bulk endocytosis, the primary mechanism for synaptic vesicle uptake during intense neuronal stimulation. Thus, apical bulk endocytosis mediates the formation of inclusions in neonatal Myo5b KO enterocytes.
© 2019 Engevik et al.
1 Communities
0 Members
0 Resources
6 MeSH Terms
Targeted mobilization of Lrig1 gastric epithelial stem cell populations by a carcinogenic type IV secretion system.
Wroblewski LE, Choi E, Petersen C, Delgado AG, Piazuelo MB, Romero-Gallo J, Lantz TL, Zavros Y, Coffey RJ, Goldenring JR, Zemper AE, Peek RM
(2019) Proc Natl Acad Sci U S A 116: 19652-19658
MeSH Terms: Adenocarcinoma, Animals, Carcinogenesis, Disease Models, Animal, Epithelial Cells, Female, Gastric Mucosa, Gastritis, Helicobacter Infections, Helicobacter pylori, Humans, Male, Membrane Glycoproteins, Mice, Mice, Knockout, Nerve Tissue Proteins, Precancerous Conditions, Primary Cell Culture, Risk Factors, Stem Cells, Stomach, Stomach Neoplasms, Type IV Secretion Systems
Show Abstract · Added September 27, 2019
-induced gastritis is the strongest risk factor for gastric adenocarcinoma, a malignancy preceded by a series of well-defined histological stages, including metaplasia. One microbial constituent that augments cancer risk is the type 4 secretion system (T4SS), which translocates the oncoprotein CagA into host cells. Aberrant stem cell activation is linked to carcinogenesis, and Lrig1 (leucine-rich repeats and Ig-like domains 1) marks a distinct population of progenitor cells. We investigated whether microbial effectors with carcinogenic potential influence Lrig1 progenitor cells ex vivo and via lineage expansion within -infected gastric mucosa. Lineage tracing was induced in (Lrig1/YFP) mice that were uninfected or subsequently infected with or an isogenic mutant (nonfunctional T4SS). In contrast to infection with wild-type (WT) for 2 wk, infection for 8 wk resulted in significantly increased inflammation and proliferation in the corpus and antrum compared with uninfected or mice infected with the mutant. WT -infected mice harbored significantly higher numbers of Lrig1/YFP epithelial cells that coexpressed UEA1 (surface cell marker). The number of cells coexpressing intrinsic factor (chief cell marker), YFP (lineage marker), and GSII lectin (spasmolytic polypeptide-expressing metaplasia marker) were increased only by WT In human samples, Lrig1 expression was significantly increased in lesions with premalignant potential compared with normal mucosa or nonatrophic gastritis. In conclusion, chronic infection stimulates Lrig1-expressing progenitor cells in a -dependent manner, and these reprogrammed cells give rise to a full spectrum of differentiated cells.
1 Communities
1 Members
0 Resources
23 MeSH Terms