Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 139

Publication Record


Generation of MLC-2v-tdTomato knock-in reporter mouse line.
Zhang Z, Nam YJ
(2018) Genesis 56: e23256
MeSH Terms: Animals, Gene Knock-In Techniques, Genes, Reporter, Lycopersicon esculentum, Mice, Mice, Inbred C57BL, Mice, Inbred Strains, Mice, Transgenic, Myosin Light Chains
Show Abstract · Added April 2, 2019
MLC-2v is a myosin light chain regulatory protein which is specifically expressed in ventricular cardiomyocytes and slow twitch skeletal muscle cells. MLC-2v plays critical roles in ventricular maturation during heart development. Mice lacking MLC-2v are embryonic lethal due to heart failure associated with abnormal myofibrillar organization of ventricular cardiomyocytes. To study the development of ventricular cardiac muscle and slow twitch skeletal muscle, we generated a new MLC-2v reporter mouse line by knocking-in a tdTomato reporter cassette into 3' UTR of the MLC-2v gene without disrupting the endogenous gene. Our results demonstrated specific MLC-2v-tdTomato knock-in reporter expression in ventricular cardiomyocytes and slow twitch muscle during myogenesis, precisely recapitulating the spatiotemporal expression pattern of endogenous MLC-2v. No tdTomato expression was observed in the atria, fast twitch muscle or other organs throughout development into adulthood. Isolated neonatal and adult ventricular cardiomyocytes uniformly express tdTomato. Taken together, MLC-2v-tdTomato knock-in reporter mouse model described in this article will serve as a valuable tool to study cardiac chamber and skeletal muscle specification during development and regeneration by overcoming the pitfalls of transgenic strategies.
© 2018 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Glucocorticoids Reprogram β-Cell Signaling to Preserve Insulin Secretion.
Fine NHF, Doig CL, Elhassan YS, Vierra NC, Marchetti P, Bugliani M, Nano R, Piemonti L, Rutter GA, Jacobson DA, Lavery GG, Hodson DJ
(2018) Diabetes 67: 278-290
MeSH Terms: 11-beta-Hydroxysteroid Dehydrogenase Type 1, Animals, Biomarkers, Calcium Channels, Calcium Signaling, Cell Differentiation, Corticosterone, Cortisone, Cyclic AMP, Glucocorticoids, Glucose, Humans, Hydrocortisone, Insulin, Insulin Secretion, Insulin-Secreting Cells, Kinetics, Mice, Inbred Strains, Mice, Knockout, Tissue Culture Techniques
Show Abstract · Added December 6, 2017
Excessive glucocorticoid exposure has been shown to be deleterious for pancreatic β-cell function and insulin release. However, glucocorticoids at physiological levels are essential for many homeostatic processes, including glycemic control. We show that corticosterone and cortisol and their less active precursors 11-dehydrocorticosterone (11-DHC) and cortisone suppress voltage-dependent Ca channel function and Ca fluxes in rodent as well as in human β-cells. However, insulin secretion, maximal ATP/ADP responses to glucose, and β-cell identity were all unaffected. Further examination revealed the upregulation of parallel amplifying cAMP signals and an increase in the number of membrane-docked insulin secretory granules. Effects of 11-DHC could be prevented by lipotoxicity and were associated with paracrine regulation of glucocorticoid activity because global deletion of 11β-hydroxysteroid dehydrogenase type 1 normalized Ca and cAMP responses. Thus, we have identified an enzymatically amplified feedback loop whereby glucocorticoids boost cAMP to maintain insulin secretion in the face of perturbed ionic signals. Failure of this protective mechanism may contribute to diabetes in states of glucocorticoid excess, such as Cushing syndrome, which are associated with frank dyslipidemia.
© 2017 by the American Diabetes Association.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Prostaglandin-Endoperoxide Synthase 1 Mediates the Timing of Parturition in Mice Despite Unhindered Uterine Contractility.
Herington JL, O'Brien C, Robuck MF, Lei W, Brown N, Slaughter JC, Paria BC, Mahadevan-Jansen A, Reese J
(2018) Endocrinology 159: 490-505
MeSH Terms: Abortifacient Agents, Steroidal, Animals, Cells, Cultured, Cervical Ripening, Cervix Uteri, Cyclooxygenase 1, Female, In Vitro Techniques, Luteolysis, Membrane Proteins, Mice, Inbred Strains, Mice, Knockout, Mifepristone, Myometrium, Ovariectomy, Oxytocics, Oxytocin, Pregnancy, Pregnancy, Prolonged, Progesterone, Uterine Contraction
Show Abstract · Added March 31, 2018
Cyclooxygenase (COX)-derived prostaglandins stimulate uterine contractions and prepare the cervix for parturition. Prior reports suggest Cox-1 knockout (KO) mice exhibit delayed parturition due to impaired luteolysis, yet the mechanism for late-onset delivery remains unclear. Here, we examined key factors for normal onset of parturition to determine whether any could account for the delayed parturition phenotype. Pregnant Cox-1KO mice did not display altered timing of embryo implantation or postimplantation growth. Although messenger RNAs of contraction-associated proteins (CAPs) were differentially expressed between Cox-1KO and wild-type (WT) myometrium, there were no differences in CAP agonist-induced intracellular calcium release, spontaneous or oxytocin (OT)-induced ex vivo uterine contractility, or in vivo uterine contractile pressure. Delayed parturition in Cox-1KO mice persisted despite exogenous OT treatment. Progesterone (P4) withdrawal, by ovariectomy or administration of the P4-antagonist RU486, diminished the delayed parturition phenotype of Cox-1KO mice. Because antepartum P4 levels do not decline in Cox-1KO females, P4-treated WT mice were examined for the effect of this hormone on in vivo uterine contractility and ex vivo cervical dilation. P4-treated WT mice had delayed parturition but normal uterine contractility. Cervical distensibility was decreased in Cox-1KO mice on the day of expected delivery and reduced in WT mice with long-term P4 treatment. Collectively, these findings show that delayed parturition in Cox-1KO mice is the result of impaired luteolysis and cervical dilation, despite the presence of strong uterine contractions.
Copyright © 2018 Endocrine Society.
0 Communities
2 Members
0 Resources
MeSH Terms
Discovery of N-(5-Fluoropyridin-2-yl)-6-methyl-4-(pyrimidin-5-yloxy)picolinamide (VU0424238): A Novel Negative Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 5 Selected for Clinical Evaluation.
Felts AS, Rodriguez AL, Blobaum AL, Morrison RD, Bates BS, Thompson Gray A, Rook JM, Tantawy MN, Byers FW, Chang S, Venable DF, Luscombe VB, Tamagnan GD, Niswender CM, Daniels JS, Jones CK, Conn PJ, Lindsley CW, Emmitte KA
(2017) J Med Chem 60: 5072-5085
MeSH Terms: Allosteric Regulation, Aminopyridines, Animals, Chemistry Techniques, Synthetic, Drug Evaluation, Preclinical, HEK293 Cells, High-Throughput Screening Assays, Humans, Macaca fascicularis, Male, Mice, Inbred Strains, Picolinic Acids, Rats, Sprague-Dawley, Receptor, Metabotropic Glutamate 5, Structure-Activity Relationship, Tissue Distribution
Show Abstract · Added March 21, 2018
Preclinical evidence in support of the potential utility of mGlu NAMs for the treatment of a variety of psychiatric and neurodegenerative disorders is extensive, and multiple such molecules have entered clinical trials. Despite some promising results from clinical studies, no small molecule mGlu NAM has yet to reach market. Here we present the discovery and evaluation of N-(5-fluoropyridin-2-yl)-6-methyl-4-(pyrimidin-5-yloxy)picolinamide (27, VU0424238), a compound selected for clinical evaluation. Compound 27 is more than 900-fold selective for mGlu versus the other mGlu receptors, and binding studies established a K value of 4.4 nM at a known allosteric binding site. Compound 27 had a clearance of 19.3 and 15.5 mL/min/kg in rats and cynomolgus monkeys, respectively. Imaging studies using a known mGlu PET ligand demonstrated 50% receptor occupancy at an oral dose of 0.8 mg/kg in rats and an intravenous dose of 0.06 mg/kg in baboons.
0 Communities
4 Members
0 Resources
16 MeSH Terms
BXD recombinant inbred strains participate in social preference, anxiety and depression behaviors along sex-differences in cytokines and tactile allodynia.
López-Granero C, Antunes Dos Santos A, Ferrer B, Culbreth M, Chakraborty S, Barrasa A, Gulinello M, Bowman AB, Aschner M
(2017) Psychoneuroendocrinology 80: 92-98
MeSH Terms: Animals, Anxiety, Anxiety Disorders, Behavior, Animal, Biomarkers, Cytokines, Depression, Depressive Disorder, Disease Models, Animal, Female, Hyperalgesia, Male, Mice, Mice, Inbred C57BL, Mice, Inbred Strains, Sex Characteristics, Social Behavior, Social Behavior Disorders
Show Abstract · Added April 26, 2017
Depression and anxiety are the most common psychiatric disorders, representing a major public health concern. Dysregulation of oxidative and inflammatory systems may be associated with psychiatric disorders, such as depression and anxiety. Due to the need to find appropriate animal models to the understanding of such disorders, we queried whether 2 BXD recombinant inbred (RI) mice strains (BXD21/TyJ RI and BXD84/RwwJ RI mice) and C57BL/6 wild-type mice show differential performance in depression and anxiety related behaviors and biomarkers. Specifically, we assessed social preference, elevated plus maze, forced swim, and Von Frey tests at 3-4 months-of-age, as well as activation of cytokines and antioxidant mRNA levels in the cortex at 7 months-of-age. We report that (1) the BXD84/RwwJ RI strain exhibits anxiety disorder and social avoidance-like behavior (2) BXD21/TyJ RI strain shows a resistance to depression illness, and (3) sex-dependent cytokine profiles and allodynia with elevated inflammatory activity were inherent to male BXD21/TyJ RI mice. In conclusion, we provide novel data in favor of the use of BXD recombinant inbred mice to further understand anxiety and depression disorders.
Copyright © 2017 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Thermoresponsive Polymer Nanoparticles Co-deliver RSV F Trimers with a TLR-7/8 Adjuvant.
Francica JR, Lynn GM, Laga R, Joyce MG, Ruckwardt TJ, Morabito KM, Chen M, Chaudhuri R, Zhang B, Sastry M, Druz A, Ko K, Choe M, Pechar M, Georgiev IS, Kueltzo LA, Seymour LW, Mascola JR, Kwong PD, Graham BS, Seder RA
(2016) Bioconjug Chem 27: 2372-2385
MeSH Terms: Adjuvants, Immunologic, Animals, Antibodies, Neutralizing, Chemistry Techniques, Synthetic, Drug Delivery Systems, Female, Mice, Inbred Strains, Nanoparticles, Polymers, Respiratory Syncytial Virus Vaccines, Toll-Like Receptor 7, Toll-Like Receptor 8, Vaccines, Synthetic, Viral Fusion Proteins
Show Abstract · Added May 3, 2017
Structure-based vaccine design has been used to develop immunogens that display conserved neutralization sites on pathogens such as HIV-1, respiratory syncytial virus (RSV), and influenza. Improving the immunogenicity of these designed immunogens with adjuvants will require formulations that do not alter protein antigenicity. Here, we show that nanoparticle-forming thermoresponsive polymers (TRP) allow for co-delivery of RSV fusion (F) protein trimers with Toll-like receptor 7 and 8 agonists (TLR-7/8a) to enhance protective immunity. Although primary amine conjugation of TLR-7/8a to F trimers severely disrupted the recognition of critical neutralizing epitopes, F trimers site-selectively coupled to TRP nanoparticles retained appropriate antigenicity and elicited high titers of prefusion-specific, T1 isotype anti-RSV F antibodies following vaccination. Moreover, coupling F trimers to TRP delivering TLR-7/8a resulted in ∼3-fold higher binding and neutralizing antibody titers than soluble F trimers admixed with TLR-7/8a and conferred protection from intranasal RSV challenge. Overall, these data show that TRP nanoparticles may provide a broadly applicable platform for eliciting neutralizing antibodies to structure-dependent epitopes on RSV, influenza, HIV-1, or other pathogens.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Impact of Maternal Serotonin Transporter Genotype on Placental Serotonin, Fetal Forebrain Serotonin, and Neurodevelopment.
Muller CL, Anacker AM, Rogers TD, Goeden N, Keller EH, Forsberg CG, Kerr TM, Wender C, Anderson GM, Stanwood GD, Blakely RD, Bonnin A, Veenstra-VanderWeele J
(2017) Neuropsychopharmacology 42: 427-436
MeSH Terms: Animals, Female, Genotype, Maternal-Fetal Exchange, Mice, Inbred Strains, Mice, Transgenic, Placenta, Pregnancy, Prosencephalon, Rhombencephalon, Serotonin, Serotonin Plasma Membrane Transport Proteins, Thalamus
Show Abstract · Added August 31, 2018
Biomarker, neuroimaging, and genetic findings implicate the serotonin transporter (SERT) in autism spectrum disorder (ASD). Previously, we found that adult male mice expressing the autism-associated SERT Ala56 variant have altered central serotonin (5-HT) system function, as well as elevated peripheral blood 5-HT levels. Early in gestation, before midbrain 5-HT projections have reached the cortex, peripheral sources supply 5-HT to the forebrain, suggesting that altered maternal or placenta 5-HT system function could impact the developing embryo. We therefore used different combinations of maternal and embryo SERT Ala56 genotypes to examine effects on blood, placenta and embryo serotonin levels and neurodevelopment at embryonic day E14.5, when peripheral sources of 5-HT predominate, and E18.5, when midbrain 5-HT projections have reached the forebrain. Maternal SERT Ala56 genotype was associated with decreased placenta and embryonic forebrain 5-HT levels at E14.5. Low 5-HT in the placenta persisted, but forebrain levels normalized by E18.5. Maternal SERT Ala56 genotype effects on forebrain 5-HT levels were accompanied by a broadening of 5-HT-sensitive thalamocortical axon projections. In contrast, no effect of embryo genotype was seen in concepti from heterozygous dams. Blood 5-HT levels were dynamic across pregnancy and were increased in SERT Ala56 dams at E14.5. Placenta RNA sequencing data at E14.5 indicated substantial impact of maternal SERT Ala56 genotype, with alterations in immune and metabolic-related pathways. Collectively, these findings indicate that maternal SERT function impacts offspring placental 5-HT levels, forebrain 5-HT levels, and neurodevelopment.
1 Communities
0 Members
0 Resources
MeSH Terms
Not all mice are the same: Standardization of animal research data presentation.
Omary MB, Cohen DE, El-Omar EM, Jalan R, Low MJ, Nathanson MH, Peek RM, Turner JR
(2016) Hepatology 63: 1752-4
MeSH Terms: Animal Experimentation, Animals, Behavior, Animal, Disease Models, Animal, Mice, Mice, Inbred Strains, Models, Animal, Research Design, Sensitivity and Specificity
Added April 6, 2017
0 Communities
1 Members
0 Resources
9 MeSH Terms
Genetic determinants of fibro-osseous lesions in aged inbred mice.
Berndt A, Ackert-Bicknell C, Silva KA, Kennedy VE, Sundberg BA, Cates JM, Schofield PN, Sundberg JP
(2016) Exp Mol Pathol 100: 92-100
MeSH Terms: Aging, Animals, Bone Diseases, Bone Marrow, Female, Fibrosis, Genome-Wide Association Study, Male, Mice, Mice, Inbred Strains, Rodent Diseases, Sex Factors
Show Abstract · Added February 15, 2016
Fibro-osseous lesions in mice are progressive aging changes in which the bone marrow is replaced to various degrees by fibrovascular stroma and bony trabeculae in a wide variety of bones. The frequency and severity varied greatly among 28 different inbred mouse stains, predominantly affecting females, ranging from 0% for 10 strains to 100% for KK/HlJ and NZW/LacJ female mice. Few lesions were observed in male mice and for 23 of the strains, no lesions were observed in males for any of the cohorts. There were no significant correlations between strain-specific severities of fibro-osseous lesions and ovarian (r=0.11; P=0.57) or endometrial (r=0.03; P=0.89) cyst formation frequency or abnormalities in parathyroid glands. Frequency of fibro-osseous lesions was most strongly associated (P<10(-6)) with genome variations on chromosome (Chr) 8 at 90.6 and 90.8Mb (rs33108071, rs33500669; P=5.0·10(-10), 1.3·10(-6)), Chr 15 at 23.6 and 23.8Mb (rs32087871, rs45770368; P=7.3·10(-7), 2.7·10(-6)), and Chr 19 at 33.2, 33.4, and 33.6Mb (rs311004232, rs30524929, rs30448815; P=2.8·10(-6), 2.8·10(-6), 2.8·10(-6)) in genome-wide association studies (GWAS). The relatively large number of candidate genes identified in the GWAS analyses suggests that this may be an extremely complex polygenic disease. These results indicate that fibro-osseous lesions are surprisingly common in many inbred strains of laboratory mice as they age. While this presents little problem in most studies that utilize young animals, it may complicate aging studies, particularly those focused on bone.
Copyright © 2015 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Fluoxetine Facilitates Fear Extinction Through Amygdala Endocannabinoids.
Gunduz-Cinar O, Flynn S, Brockway E, Kaugars K, Baldi R, Ramikie TS, Cinar R, Kunos G, Patel S, Holmes A
(2016) Neuropsychopharmacology 41: 1598-609
MeSH Terms: Amidohydrolases, Amygdala, Animals, Anti-Anxiety Agents, Arachidonic Acids, Endocannabinoids, Extinction, Psychological, Fear, Fluoxetine, Male, Mice, Mice, Inbred Strains, Polyunsaturated Alkamides
Show Abstract · Added March 14, 2018
Pharmacologically elevating brain endocannabinoids (eCBs) share anxiolytic and fear extinction-facilitating properties with classical therapeutics, including the selective serotonin reuptake inhibitor, fluoxetine. There are also known functional interactions between the eCB and serotonin systems and preliminary evidence that antidepressants cause alterations in brain eCBs. However, the potential role of eCBs in mediating the facilitatory effects of fluoxetine on fear extinction has not been established. Here, to test for a possible mechanistic contribution of eCBs to fluoxetine's proextinction effects, we integrated biochemical, electrophysiological, pharmacological, and behavioral techniques, using the extinction-impaired 129S1/Sv1mJ mouse strain. Chronic fluoxetine treatment produced a significant and selective increase in levels of anandamide in the BLA, and an associated decrease in activity of the anandamide-catabolizing enzyme, fatty acid amide hydrolase. Slice electrophysiological recordings showed that fluoxetine-induced increases in anandamide were associated with the amplification of eCB-mediated tonic constraint of inhibitory, but not excitatory, transmission in the BLA. Behaviorally, chronic fluoxetine facilitated extinction retrieval in a manner that was prevented by systemic or BLA-specific blockade of CB1 receptors. In contrast to fluoxetine, citalopram treatment did not increase BLA eCBs or facilitate extinction. Taken together, these findings reveal a novel, obligatory role for amygdala eCBs in the proextinction effects of a major pharmacotherapy for trauma- and stressor-related disorders and anxiety disorders.
0 Communities
1 Members
0 Resources
13 MeSH Terms