Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 98

Publication Record

Connections

Long-term outcomes in mouse models of ischemia-reperfusion-induced acute kidney injury.
Scarfe L, Menshikh A, Newton E, Zhu Y, Delgado R, Finney C, de Caestecker MP
(2019) Am J Physiol Renal Physiol 317: F1068-F1080
MeSH Terms: Acute Kidney Injury, Animals, Diabetes Mellitus, Experimental, Diabetic Nephropathies, Disease Models, Animal, Female, Fibrosis, Kidney Function Tests, Male, Mice, Mice, Inbred BALB C, Mice, Inbred C57BL, Mice, Inbred DBA, Nephrectomy, Reperfusion Injury, Sex Characteristics, Species Specificity
Show Abstract · Added May 10, 2020
Severe acute kidney injury has a high mortality and is a risk factor for progressive chronic kidney disease. None of the potential therapies that have been identified in preclinical studies have successfully improved clinical outcomes. This failure is partly because animal models rarely reflect the complexity of human disease: most preclinical studies are short term and are commonly performed in healthy, young, male mice. Therapies that are effective in preclinical models that share common clinical features seen in patients with acute kidney injury, including genetic diversity, different sexes, and comorbidities, and evaluate long-term outcomes are more likely to predict success in the clinic. Here, we evaluated susceptibility to chronic kidney disease after ischemia-reperfusion injury with delayed nephrectomy by monitoring long-term functional and histological responses to injury. We defined conditions required to induce long-term postinjury renal dysfunction and fibrosis without increased mortality in a reproducible way and evaluate effect of mouse strains, sexes, and preexisting diabetes on these responses.
0 Communities
1 Members
0 Resources
MeSH Terms
Impaired insulin signaling in the B10.D2--/oSnJ mouse model of complement factor 5 deficiency.
Peterson KR, Gutierrez DA, Kikuchi T, Anderson-Baucum EK, Winn NC, Shuey MM, Bolus WR, McGuinness OP, Hasty AH
(2019) Am J Physiol Endocrinol Metab 317: E200-E211
MeSH Terms: Adenoviridae, Animals, Complement C5, Disease Models, Animal, Energy Metabolism, Glucose Intolerance, Hereditary Complement Deficiency Diseases, Insulin Resistance, Mice, Mice, Inbred AKR, Mice, Inbred C57BL, Mice, Inbred CBA, Mice, Inbred DBA, Mice, Inbred NOD, Mice, Transgenic, Signal Transduction, Transduction, Genetic
Show Abstract · Added March 3, 2020
Given the chemoattractant potential of complement factor 5 (C5) and its increased expression in adipose tissue (AT) of obese mice, we determined whether this protein of the innate immune system impacts insulin action. C5 control (C5) and spontaneously C5-deficient (C5, B10.D2--/oSnJ) mice were placed on low- and high-fat diets to investigate their inflammatory and metabolic phenotypes. Adenoviral delivery was used to evaluate the effects of exogenous C5 on systemic metabolism. C5 mice gained less weight than controls while fed a high-fat diet, accompanied by reduced AT inflammation, liver mass, and liver triglyceride content. Despite these beneficial metabolic effects, C5 mice demonstrated severe glucose intolerance and systemic insulin resistance, as well as impaired insulin signaling in liver and AT. C5 mice also exhibited decreased expression of insulin receptor (INSR) gene and protein, as well as improper processing of pro-INSR. These changes were not due to the C5 deficiency alone as other C5-deficient models did not recapitulate the INSR processing defect; rather, in addition to the mutation in the gene, whole genome sequencing revealed an intronic 31-bp deletion in the gene in the B10.D2--/oSnJ model. Irrespective of the genetic defect, adenoviral delivery of C5 improved insulin sensitivity in both C5 and C5 mice, indicating an insulin-sensitizing function of C5.
0 Communities
1 Members
0 Resources
MeSH Terms
Disabling the Gβγ-SNARE interaction disrupts GPCR-mediated presynaptic inhibition, leading to physiological and behavioral phenotypes.
Zurawski Z, Thompson Gray AD, Brady LJ, Page B, Church E, Harris NA, Dohn MR, Yim YY, Hyde K, Mortlock DP, Jones CK, Winder DG, Alford S, Hamm HE
(2019) Sci Signal 12:
MeSH Terms: Animals, Calcium, Exocytosis, GTP-Binding Protein alpha Subunits, Gi-Go, GTP-Binding Protein beta Subunits, GTP-Binding Protein gamma Subunits, Mice, Inbred C57BL, Mice, Inbred DBA, Mice, Knockout, Neural Inhibition, Phenotype, Protein Binding, Receptors, G-Protein-Coupled, Synaptic Transmission, Synaptosomal-Associated Protein 25
Show Abstract · Added February 22, 2019
G protein-coupled receptors (GPCRs) that couple to G proteins modulate neurotransmission presynaptically by inhibiting exocytosis. Release of Gβγ subunits from activated G proteins decreases the activity of voltage-gated Ca channels (VGCCs), decreasing excitability. A less understood Gβγ-mediated mechanism downstream of Ca entry is the binding of Gβγ to SNARE complexes, which facilitate the fusion of vesicles with the cell plasma membrane in exocytosis. Here, we generated mice expressing a form of the SNARE protein SNAP25 with premature truncation of the C terminus and that were therefore partially deficient in this interaction. SNAP25Δ3 homozygote mice exhibited normal presynaptic inhibition by GABA receptors, which inhibit VGCCs, but defective presynaptic inhibition by receptors that work directly on the SNARE complex, such as 5-hydroxytryptamine (serotonin) 5-HT receptors and adrenergic α receptors. Simultaneously stimulating receptors that act through both mechanisms showed synergistic inhibitory effects. SNAP25Δ3 homozygote mice had various behavioral phenotypes, including increased stress-induced hyperthermia, defective spatial learning, impaired gait, and supraspinal nociception. These data suggest that the inhibition of exocytosis by G-coupled GPCRs through the Gβγ-SNARE interaction is a crucial component of numerous physiological and behavioral processes.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
1 Communities
3 Members
0 Resources
15 MeSH Terms
The proto-oncogene function of Mdm2 in bone.
Olivos DJ, Perrien DS, Hooker A, Cheng YH, Fuchs RK, Hong JM, Bruzzaniti A, Chun K, Eischen CM, Kacena MA, Mayo LD
(2018) J Cell Biochem 119: 8830-8840
MeSH Terms: Analysis of Variance, Animals, Bone Density, Bone Remodeling, Calcification, Physiologic, Cancellous Bone, Cell Line, Tumor, Female, Humans, Male, Mice, Mice, Inbred C57BL, Mice, Inbred DBA, Osteoblasts, Osteoclasts, Osteogenesis, Osteosarcoma, Proto-Oncogene Proteins c-mdm2, Proto-Oncogenes
Show Abstract · Added April 1, 2019
Mouse double minute 2 (Mdm2) is a multifaceted oncoprotein that is highly regulated with distinct domains capable of cellular transformation. Loss of Mdm2 is embryonically lethal, making it difficult to study in a mouse model without additional genetic alterations. Global overexpression through increased Mdm2 gene copy number (Mdm2 ) results in the development of hematopoietic neoplasms and sarcomas in adult animals. In these mice, we found an increase in osteoblastogenesis, differentiation, and a high bone mass phenotype. Since it was difficult to discern the cell lineage that generated this phenotype, we generated osteoblast-specific Mdm2 overexpressing (Mdm2 ) mice in 2 different strains, C57BL/6 and DBA. These mice did not develop malignancies; however, these animals and the MG63 human osteosarcoma cell line with high levels of Mdm2 showed an increase in bone mineralization. Importantly, overexpression of Mdm2 corrected age-related bone loss in mice, providing a role for the proto-oncogenic activity of Mdm2 in bone health of adult animals.
© 2018 Wiley Periodicals, Inc.
0 Communities
2 Members
0 Resources
19 MeSH Terms
The Molecular Basis for the Lack of Inflammatory Responses in Mouse Embryonic Stem Cells and Their Differentiated Cells.
D'Angelo W, Gurung C, Acharya D, Chen B, Ortolano N, Gama V, Bai F, Guo YL
(2017) J Immunol 198: 2147-2155
MeSH Terms: Animals, Cell Differentiation, Chikungunya Fever, Chikungunya virus, Embryonic Stem Cells, Immunity, Inflammation, Interferons, Lipopolysaccharides, Mice, Mice, Inbred DBA, NF-kappa B, RAW 264.7 Cells, Tumor Necrosis Factor-alpha, Virus Diseases
Show Abstract · Added July 10, 2017
We reported previously that mouse embryonic stem cells do not have a functional IFN-based antiviral mechanism. The current study extends our investigation to the inflammatory response in mouse embryonic stem cells and mouse embryonic stem cell-differentiated cells. We demonstrate that LPS, TNF-α, and viral infection, all of which induce robust inflammatory responses in naturally differentiated cells, failed to activate NF-κB, the key transcription factor that mediates inflammatory responses, and were unable to induce the expression of inflammatory genes in mouse embryonic stem cells. Similar results were obtained in human embryonic stem cells. In addition to the inactive state of NF-κB, the deficiency in the inflammatory response in mouse embryonic stem cells is also attributed to the lack of functional receptors for LPS and TNF-α. In vitro differentiation can trigger the development of the inflammatory response mechanism, as indicated by the transition of NF-κB from its inactive to active state. However, a limited response to TNF-α and viral infection, but not to LPS, was observed in mouse embryonic stem cell-differentiated fibroblasts. We conclude that the inflammatory response mechanism is not active in mouse embryonic stem cells, and in vitro differentiation promotes only partial development of this mechanism. Together with our previous studies, the findings described in this article demonstrate that embryonic stem cells are fundamentally different from differentiated somatic cells in their innate immunity, which may have important implications in developmental biology, immunology, and embryonic stem cell-based regenerative medicine.
Copyright © 2017 by The American Association of Immunologists, Inc.
0 Communities
1 Members
0 Resources
15 MeSH Terms
The impact of SGLT2 inhibitors, compared with insulin, on diabetic bone disease in a mouse model of type 1 diabetes.
Thrailkill KM, Nyman JS, Bunn RC, Uppuganti S, Thompson KL, Lumpkin CK, Kalaitzoglou E, Fowlkes JL
(2017) Bone 94: 141-151
MeSH Terms: Animals, Biomarkers, Blood Glucose, Bone Diseases, Metabolic, Bone Resorption, Bone and Bones, Canagliflozin, Diabetes Mellitus, Type 1, Disease Models, Animal, Insulin, Linear Models, Male, Mice, Inbred DBA, Phenotype, Sodium-Glucose Transporter 2, Sodium-Glucose Transporter 2 Inhibitors
Show Abstract · Added January 9, 2017
Skeletal co-morbidities in type 1 diabetes include an increased risk for fracture and delayed fracture healing, which are intertwined with disease duration and the presence of other diabetic complications. As such, chronic hyperglycemia is undoubtedly a major contributor to these outcomes, despite standard insulin-replacement therapy. Therefore, using the streptozotocin (STZ)-induced model of hypoinsulinemic hyperglycemia in DBA/2J male mice, we compared the effects of two glucose lowering therapies on the fracture resistance of bone and markers of bone turnover. Twelve week-old diabetic (DM) mice were treated for 9weeks with: 1) oral canagliflozin (CANA, dose range ~10-16mg/kg/day), an inhibitor of the renal sodium-dependent glucose co-transporter type 2 (SGLT2); 2) subcutaneous insulin, via minipump (INS, 0.125units/day); 3) co-therapy (CANA+INS); or 4) no treatment (STZ, without therapy). These groups were also compared to non-diabetic control groups. Untreated diabetic mice experienced increased bone resorption and significant deficits in cortical and trabecular bone that contributed to structural weakness of the femur mid-shaft and the lumbar vertebra, as determined by three-point bending and compression tests, respectively. Treatment with either canagliflozin or insulin alone only partially rectified hyperglycemia and the diabetic bone phenotype. However, when used in combination, normalization of glycemic control was achieved, and a prevention of the DM-related deterioration in bone microarchitecture and bone strength occurred, due to additive effects of canagliflozin and insulin. Nevertheless, CANA-treated mice, whether diabetic or non-diabetic, demonstrated an increase in urinary calcium loss; FGF23 was also increased in CANA-treated DM mice. These findings could herald ongoing bone mineral losses following CANA exposure, suggesting that certain CANA-induced skeletal consequences might detract from therapeutic improvements in glycemic control, as they relate to diabetic bone disease.
Copyright © 2016 Elsevier Inc. All rights reserved.
2 Communities
1 Members
0 Resources
16 MeSH Terms
Erythropoietin either Prevents or Exacerbates Retinal Damage from Eye Trauma Depending on Treatment Timing.
Bricker-Anthony C, D'Surney L, Lunn B, Hines-Beard J, Jo M, Bernardo-Colon A, Rex TS
(2017) Optom Vis Sci 94: 20-32
MeSH Terms: Animals, Blast Injuries, Cell Survival, Dependovirus, Disease Models, Animal, Erythropoietin, Eye Injuries, Ferritins, Genetic Therapy, Genetic Vectors, Green Fluorescent Proteins, In Situ Nick-End Labeling, Injections, Intramuscular, Injections, Intraperitoneal, Mice, Mice, Inbred BALB C, Mice, Inbred DBA, NADPH Oxidases, Oxidative Stress, Polymerase Chain Reaction, Retina, Retinal Diseases, Time Factors, Vision Disorders, Wounds, Nonpenetrating
Show Abstract · Added April 2, 2019
PURPOSE - Erythropoietin (EPO) is a promising neuroprotective agent and is currently in Phase III clinical trials for the treatment of traumatic brain injury. The goal of this study was to determine if EPO is also protective in traumatic eye injury.
METHODS - The left eyes of anesthetized DBA/2J or Balb/c mice were exposed to a single 26 psi overpressure air-wave while the rest of the body was shielded. DBA/2J mice were given intraperitoneal injections of EPO or buffer and analyses were performed at 3 or 7 days post-blast. Balb/c mice were given intramuscular injections of rAAV.EpoR76E or rAAV.eGFP either pre- or post-blast and analyses were performed at 1 month post-blast.
RESULTS - EPO had a bimodal effect on cell death, glial reactivity, and oxidative stress. All measures were increased at 3 days post-blast and decreased at 7-days post-blast. Increased retinal ferritin and NADPH oxygenases were detected in retinas from EPO-treated mice. The gene therapy approach protected against axon degeneration, cell death, and oxidative stress when given after blast, but not before.
CONCLUSIONS - Systemic, exogenous EPO and EPO-R76E protects the retina after trauma even when initiation of treatment is delayed by up to 3 weeks. Systemic treatment with EPO or EPO-R76E beginning before or soon after trauma may exacerbate protective effects of EPO within the retina as a result of increased iron levels from erythropoiesis and, thus, increased oxidative stress within the retina. This is likely overcome with time as a result of an increase in levels of antioxidant enzymes. Either intraocular delivery of EPO or treatment with non-erythropoietic forms of EPO may be more efficacious.
0 Communities
1 Members
0 Resources
MeSH Terms
Virus-mediated EpoR76E gene therapy preserves vision in a glaucoma model by modulating neuroinflammation and decreasing oxidative stress.
Hines-Beard J, Bond WS, Backstrom JR, Rex TS
(2016) J Neuroinflammation 13: 39
MeSH Terms: Animals, Calcium-Binding Proteins, Cholera Toxin, Cytokines, Dependovirus, Disease Models, Animal, Erythropoietin, Evoked Potentials, Visual, Fluorescein Angiography, Gene Expression Regulation, Genetic Therapy, Glaucoma, Ki-67 Antigen, Mice, Mice, Inbred DBA, Microfilament Proteins, Microglia, Oxidative Stress, Photic Stimulation, Retina, Transduction, Genetic
Show Abstract · Added April 2, 2019
BACKGROUND - Glaucoma is a complex neurodegeneration and a leading cause of blindness worldwide. Current therapeutic strategies, which are all directed towards lowering the intraocular pressure (IOP), do not stop progression of the disease. We have demonstrated that recombinant adeno-associated virus (rAAV) gene delivery of a form of erythropoietin with attenuated erythropoietic activity (EpoR76E) can preserve retinal ganglion cells, their axons, and vision without decreasing IOP. The goal of this study was to determine if modulation of neuroinflammation or oxidative stress played a role in the neuroprotective activity of EPO.R76E.
METHODS - Five-month-old DBA/2J mice were treated with either rAAV.EpoR76E or a control vector and collected at 8 months of age. Neuroprotection was assessed by quantification of axon transport and visual evoked potentials. Microglia number and morphology and cytokine and chemokine levels were quantified. Message levels of oxidative stress-related proteins were assessed.
RESULTS - Axon transport and visual evoked potentials were preserved in rAAV.EpoR76E-treated mice. The number of microglia was decreased in retinas from 8-month-old rAAV.EpoR76E-treated mice, but proliferation was unaffected. The blood-retina barrier was also unaffected by treatment. Levels of some pro-inflammatory cytokines were decreased in retinas from rAAV.EpoR76E-treated mice including IL-1, IL-12, IL-13, IL-17, CCL4, and CCL5. TNFα messenger RNA (mRNA) was increased in retinas from 8-month-old mice compared to 3-month-old controls regardless of treatment. Expression of several antioxidant proteins was increased in retinas of rAAV.EpoR76E-treated 8-month-old mice.
CONCLUSIONS - Treatment with rAAV.EpoR76E preserves vision in the DBA/2J model of glaucoma at least in part by decreasing infiltration of peripheral immune cells, modulating microglial reactivity, and decreasing oxidative stress.
0 Communities
1 Members
0 Resources
MeSH Terms
Glial coverage in the optic nerve expands in proportion to optic axon loss in chronic mouse glaucoma.
Bosco A, Breen KT, Anderson SR, Steele MR, Calkins DJ, Vetter ML
(2016) Exp Eye Res 150: 34-43
MeSH Terms: Animals, Astrocytes, Axons, Chronic Disease, Disease Models, Animal, Female, Glaucoma, Gliosis, Male, Mice, Mice, Inbred DBA, Microscopy, Confocal, Neuroglia, Optic Nerve, Optic Nerve Diseases, Photomicrography, Retinal Ganglion Cells
Show Abstract · Added February 8, 2016
Within the white matter, axonal loss by neurodegeneration is coupled to glial cell changes in gene expression, structure and function commonly termed gliosis. Recently, we described the highly variable expansion of gliosis alebosco@neuro.utah.edu in degenerative optic nerves from the DBA/2J mouse model of chronic, age-related glaucoma. Here, to estimate and compare the levels of axonal loss with the expansion of glial coverage and axonal degeneration in DBA/2J nerves, we combined semiautomatic axon counts with threshold-based segmentation of total glial/scar areas and degenerative axonal profiles in plastic cross-sections. In nerves ranging from mild to severe degeneration, we found that the progression of axonal dropout is coupled to an increase of gliotic area. We detected a strong correlation between axon loss and the aggregate coverage by glial cells and scar, whereas axon loss did not correlate with the small fraction of degenerating profiles. Nerves with low to medium levels of axon loss displayed moderate glial reactivity, consisting of hypertrophic astrocytes, activated microglia and normal distribution of oligodendrocytes, with minimal reorganization of the tissue architecture. In contrast, nerves with extensive axonal loss showed prevalent rearrangement of the nerve, with loss of axon fascicle territories and enlarged or almost continuous gliotic and scar domains, containing reactive astrocytes, oligodendrocytes and activated microglia. These findings support the value of optic nerve gliotic expansion as a quantitative estimate of optic neuropathy that correlates with axon loss, applicable to grade the severity of optic nerve damage in mouse chronic glaucoma.
Copyright © 2016 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Joint mouse-human phenome-wide association to test gene function and disease risk.
Wang X, Pandey AK, Mulligan MK, Williams EG, Mozhui K, Li Z, Jovaisaite V, Quarles LD, Xiao Z, Huang J, Capra JA, Chen Z, Taylor WL, Bastarache L, Niu X, Pollard KS, Ciobanu DC, Reznik AO, Tishkov AV, Zhulin IB, Peng J, Nelson SF, Denny JC, Auwerx J, Lu L, Williams RW
(2016) Nat Commun 7: 10464
MeSH Terms: Animals, Bone Density, Caenorhabditis elegans, Fumarate Hydratase, Gene Expression Regulation, Gene Library, Genetic Predisposition to Disease, Genetic Variation, Genome-Wide Association Study, Genomics, Humans, Mice, Mice, Inbred DBA, Quantitative Trait Loci
Show Abstract · Added April 29, 2016
Phenome-wide association is a novel reverse genetic strategy to analyze genome-to-phenome relations in human clinical cohorts. Here we test this approach using a large murine population segregating for ∼5 million sequence variants, and we compare our results to those extracted from a matched analysis of gene variants in a large human cohort. For the mouse cohort, we amassed a deep and broad open-access phenome consisting of ∼4,500 metabolic, physiological, pharmacological and behavioural traits, and more than 90 independent expression quantitative trait locus (QTL), transcriptome, proteome, metagenome and metabolome data sets--by far the largest coherent phenome for any experimental cohort (www.genenetwork.org). We tested downstream effects of subsets of variants and discovered several novel associations, including a missense mutation in fumarate hydratase that controls variation in the mitochondrial unfolded protein response in both mouse and Caenorhabditis elegans, and missense mutations in Col6a5 that underlies variation in bone mineral density in both mouse and human.
1 Communities
2 Members
0 Resources
14 MeSH Terms