Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 5 of 5

Publication Record

Connections

Analysis of DNA adducts formed in vivo in rats and mice from 1,2-dibromoethane, 1,2-dichloroethane, dibromomethane, and dichloromethane using HPLC/accelerator mass spectrometry and relevance to risk estimates.
Watanabe K, Liberman RG, Skipper PL, Tannenbaum SR, Guengerich FP
(2007) Chem Res Toxicol 20: 1594-600
MeSH Terms: Animals, Chromatography, High Pressure Liquid, DNA Adducts, Ethylene Dibromide, Ethylene Dichlorides, Female, Hydrocarbons, Brominated, Kidney, Liver, Male, Mass Spectrometry, Methylene Chloride, Mice, Rats, Research Design, Risk Assessment
Show Abstract · Added March 5, 2014
Dihaloalkanes are of toxicological interest because of their high-volume use in industry and their abilities to cause tumors in rodents, particularly dichloromethane and 1,2-dichloroethane. The brominated analogues are not used as extensively but are known to produce more toxicity in some systems. Rats and mice were treated i.p. with (14)C-dichloromethane, -dibromomethane, -1,2-dichloroethane, or -1,2-dibromoethane [5 mg (kg body weight)(-1)], and livers and kidneys were collected to rapidly isolate DNA. The DNA was digested using a procedure designed to minimize processing time, because some of the potential dihalomethane-derived DNA-glutathione (GSH) adducts are known to be unstable, and the HPLC fractions corresponding to major adduct standards were separated and analyzed for (14)C using accelerator mass spectrometry. The level of liver or kidney S-[2-(N(7)-guanyl)ethyl]GSH in rats treated with 1,2-dibromoethane was approximately 1 adduct/10(5) DNA bases; in male or female mice, the level was approximately one-half of this. The levels of 1,2-dichloroethane adducts were 10-50-fold lower. None of four known (in vitro) GSH-DNA adducts was detected at a level of >2/10(8) DNA bases from dibromomethane or dichloromethane. These results provide parameters for risk assessment of these compounds: DNA binding occurs with 1,2-dichloroethane but is considerably less than from 1,2-dibromoethane in vivo, and low exposure to dihalomethanes does not produce appreciable DNA adduct levels in rat or mouse liver and kidney of the doses used. The results may be used to address issues in human risk assessment.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Limited reactivity of formyl chloride with glutathione and relevance to metabolism and toxicity of dichloromethane.
Watanabe K, Guengerich FP
(2006) Chem Res Toxicol 19: 1091-6
MeSH Terms: Animals, Chromatography, Liquid, Formates, Glutathione, Humans, In Vitro Techniques, Mass Spectrometry, Methylene Chloride, Microsomes, Liver, Protein Binding, Rats, Rats, Sprague-Dawley
Show Abstract · Added March 5, 2014
Formyl chloride has been indirectly implicated as an intermediate in the oxidation of CH(2)Cl(2) and proposed to be a product of the oxidation of some other compounds. Formyl chloride was synthesized and added to aqueous solutions, with CO formed as a product. The presence of glutathione (GSH) did not reduce the yield of CO at any of the pH values tested. At pH >or= 9, a small amount of S-formyl GSH was detected (
0 Communities
1 Members
0 Resources
12 MeSH Terms
Formation and mass spectrometric analysis of DNA and nucleoside adducts by S-(1-acetoxymethyl)glutathione and by glutathione S-transferase-mediated activation of dihalomethanes.
Marsch GA, Botta S, Martin MV, McCormick WA, Guengerich FP
(2004) Chem Res Toxicol 17: 45-54
MeSH Terms: Animals, Chromatography, High Pressure Liquid, Cyclic Nucleotide Phosphodiesterases, Type 2, DNA Adducts, Endodeoxyribonucleases, Escherichia coli, Glutathione, Glutathione Transferase, Humans, Hydrocarbons, Brominated, Isoenzymes, Methylene Chloride, Molecular Structure, Phosphoric Diester Hydrolases, Rats, Spectrometry, Mass, Electrospray Ionization, Transfection
Show Abstract · Added March 5, 2014
The dihalomethane CH(2)Cl(2) is an industrial solvent of potential concern to humans because of its potential genotoxicity and carcinogenicity. To characterize DNA damage by dihalomethanes, a rapid DNA digestion under acidic conditions was developed to identify alkali labile DNA-dihalomethane nucleoside adducts using HPLC-electrospray mass spectrometry. DNA digestion worked best using pH 5.0 sodium acetate buffer, a 30 min incubation with DNase II and phosphodiesterase II, and a 2 h acid phosphatase digest. DNA was modified with S-(1-acetoxymethyl)glutathione (GSCH(2)OAc), a reagent modeling activated dihalomethanes. Adducts to G, A, and T were detected at high ratios of GSCH(2)OAc/DNA following digestion of the DNA with the procedure used here. The relative efficacy of adduct formation was G > T > A > C. The four DNA nucleosides were also reacted with the dihalomethanes CH(2)Cl(2) and CH(2)Br(2) in the presence of glutathione (GSH) and GSH S-transferases from bacteria (DM11), rat (GST 5-5), and human (GST T1-1) under conditions that produce mutations in bacteria. All enzymes formed adducts to all four nucleosides, with dGuo being the most readily modified nucleoside. Thus, the pattern paralleled the results obtained with the model compounds GSCH(2)OAc and DNA. CH(2)Cl(2) and CH(2)Br(2) yielded similar amounts of adducts under these conditions. The relative efficiency of adduct formation by GSH transferases was rat 5-5 > human T1-1 > bacterial DM11, showing that human GSH transferase T1-1 can form dihalomethane adducts under the conditions used. Although the lability of DNA adducts has precluded more sophisticated experiments and in vivo studies have not yet been possible, the work collectively demonstrates the ability of several GSH transferases to generate DNA adducts from dihalomethanes, with G being the preferred site of adduction in both this and the GSCH(2)OAc model system.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Analysis of the kinetic mechanism of haloalkane conjugation by mammalian theta-class glutathione transferases.
Guengerich FP, McCormick WA, Wheeler JB
(2003) Chem Res Toxicol 16: 1493-9
MeSH Terms: Alkanes, Animals, Ethylene Dichlorides, Glutathione, Glutathione Transferase, Humans, Hydrocarbons, Brominated, Hydrocarbons, Halogenated, Kinetics, Methane, Methylene Chloride, Models, Chemical, Rats
Show Abstract · Added March 5, 2014
Glutathione (GSH) transferases (GSTs) catalyze the conjugation of small haloalkanes with GSH. In the case of dihalomethanes and vic-1,2-dihaloalkanes, the reaction leads to the formation of genotoxic GSH conjugates. A generally established feature of the reaction of the mammalian theta-class GSTs, which preferentially catalyze these reactions, is the lack of saturability of the rate with regard to the substrate concentration. However, the bacterial GST DM11 catalyzes the same reactions with a relatively low K(m). Recently, DM11 has been shown to exhibit burst kinetics, with a rate-determining k(off) rate for product (Stourman et al. (2003) Biochemistry 42, 11048-11056). We examined rat GST 5-5 and human GST T1-1 and did not detect any burst kinetics in the conjugation of C(2)H(5)Cl, CH(2)Br(2), or CH(2)Cl(2), distinguishing these enzymes from GST DM11. The kinetic results were fit to a minimal mechanism in which the rate-limiting step is halide displacement. The differences in the steady state kinetics of conjugations catalyzed by bacterial GST DM11 and the mammalian GSTs 5-5 and T1-1 are concluded to be the result of differences in the rate-limiting steps and not to inherent enzyme affinity for the haloalkanes. The results may be interpreted in the context of a model in which the halide order affects the rate of carbon-halogen bond cleavage of all such reactions catalyzed by the GSTs. With GST DM11, the halide order is manifested in the K(m) parameter but not k(cat). With mammalian GSTs, the high K(m) is difficult to estimate. With all of the GSTs, the halide order is seen in the enzyme efficiency, k(cat)/K(m), with C-Br cleavage approximately 10-fold faster than C-Cl cleavage. The ratio k(cat)/K(m) is the most relevant parameter for issues of risk assessment.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Characterization of nucleoside and DNA adducts formed by S-(1-acetoxymethyl)glutathione and implications for dihalomethane-glutathione conjugates.
Marsch GA, Mundkowski RG, Morris BJ, Manier ML, Hartman MK, Guengerich FP
(2001) Chem Res Toxicol 14: 600-8
MeSH Terms: DNA, DNA Adducts, Deoxyadenosines, Deoxycytidine, Deoxyguanosine, Endodeoxyribonucleases, Exonucleases, Glutathione, Methylene Chloride, Nucleosides, Thymidine
Show Abstract · Added March 5, 2014
S-(1-Acetoxymethyl)glutathione (GSCH(2)OAc) was synthesized and used as a model for the reaction of glutathione (GSH)-dihaloalkane conjugates with nucleosides and DNA. Previously, S-[1-(N(2)-deoxyguanosinyl)methyl]GSH had been identified as the major adduct formed in the reaction of GSCH(2)OAc with deoxyguanosine. GSCH(2)OAc was incubated with the three remaining deoxyribonucleosides to identify other possible adducts. Adducts to all three nucleosides were found using electrospray ionization mass spectrometry (ESI MS). The adduct of GSCH(2)OAc and deoxyadenosine was formed in yield of up to 0.05% and was identified as S-[1-(N(7)-deoxyadenosinyl)methyl]GSH. The pyrimidine deoxyribonucleoside adducts were formed more efficiently, resulting in yields of 1 and 2% for the GSCH(2)OAc adducts derived from thymidine and deoxycytidine, respectively, but their lability prevented their structural identification by (1)H NMR. On the basis of the available UV spectra, we propose the structures S-[1-(N(3)-thymidinyl)methyl]GSH and S-[1-(N(4)-deoxycytidinyl)methyl]GSH. Because adduct degradation occurred most rapidly at alkaline and neutral pH values, an enzymatic DNA digestion procedure was developed for the rapid hydrolysis of DNA to deoxyribonucleosides at acidic pH. DNA digests were completed in less than 2 h with a two-step method, which consisted of a 15 min incubation of DNA with high concentrations of deoxyribonuclease II and phosphodiesterase II at pH 4.5, followed by incubation of resulting nucleotides with acid phosphatase. Analysis of the hydrolysis products by HPLC-ESI-MS indicated the presence of the thymidine adduct.
0 Communities
1 Members
0 Resources
11 MeSH Terms