Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 138

Publication Record


Simultaneous Real-Time Measurement of the β-Cell Membrane Potential and Ca Influx to Assess the Role of Potassium Channels on β-Cell Function.
Vierra NC, Dickerson MT, Philipson LH, Jacobson DA
(2018) Methods Mol Biol 1684: 73-84
MeSH Terms: Animals, Calcium, Cells, Cultured, Humans, Insulin-Secreting Cells, Membrane Potentials, Mice, Patch-Clamp Techniques, Potassium Channels
Show Abstract · Added November 13, 2017
Stimulus-secretion coupling in pancreatic β-cells requires Ca influx through voltage-dependent Ca channels, whose activity is controlled by the plasma membrane potential (V ). Here, we present a method of measuring fluctuations in the β-cell V and Ca influx simultaneously, which provides valuable information about the ionic signaling mechanisms that underlie insulin secretion. This chapter describes the use of perforated patch clamp electrophysiology on cells loaded with a fluorescent intracellular Ca indicator, which permits the stable recording conditions needed to monitor the V and Ca influx in β-cells. Moreover, this chapter describes the protocols necessary for the preparation of mouse and human islet cells for the simultaneous recording of V and Ca as well as determining the specific islet cell type assessed in each experiment.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Osteopontin activates the diabetes-associated potassium channel TALK-1 in pancreatic β-cells.
Dickerson MT, Vierra NC, Milian SC, Dadi PK, Jacobson DA
(2017) PLoS One 12: e0175069
MeSH Terms: Aged, Animals, Calcium Signaling, Diabetes Mellitus, Type 2, Female, Glucose, HEK293 Cells, Humans, Insulin, Insulin Secretion, Insulin-Secreting Cells, Membrane Potentials, Mice, Knockout, Osteopontin, Potassium, Potassium Channels, Tandem Pore Domain
Show Abstract · Added November 13, 2017
Glucose-stimulated insulin secretion (GSIS) relies on β-cell Ca2+ influx, which is modulated by the two-pore-domain K+ (K2P) channel, TALK-1. A gain-of-function polymorphism in KCNK16, the gene encoding TALK-1, increases risk for developing type-2 diabetes. While TALK-1 serves an important role in modulating GSIS, the regulatory mechanism(s) that control β-cell TALK-1 channels are unknown. Therefore, we employed a membrane-specific yeast two-hybrid (MYTH) assay to identify TALK-1-interacting proteins in human islets, which will assist in determining signaling modalities that modulate TALK-1 function. Twenty-one proteins from a human islet cDNA library interacted with TALK-1. Some of these interactions increased TALK-1 activity, including intracellular osteopontin (iOPN). Intracellular OPN is highly expressed in β-cells and is upregulated under pre-diabetic conditions to help maintain normal β-cell function; however, the functional role of iOPN in β-cells is poorly understood. We found that iOPN colocalized with TALK-1 in pancreatic sections and coimmunoprecipitated with human islet TALK-1 channels. As human β-cells express two K+ channel-forming variants of TALK-1, regulation of these TALK-1 variants by iOPN was assessed. At physiological voltages iOPN activated TALK-1 transcript variant 3 channels but not TALK-1 transcript variant 2 channels. Activation of TALK-1 channels by iOPN also hyperpolarized resting membrane potential (Vm) in HEK293 cells and in primary mouse β-cells. Intracellular OPN was also knocked down in β-cells to test its effect on β-cell TALK-1 channel activity. Reducing β-cell iOPN significantly decreased TALK-1 K+ currents and increased glucose-stimulated Ca2+ influx. Importantly, iOPN did not affect the function of other K2P channels or alter Ca2+ influx into TALK-1 deficient β-cells. These results reveal the first protein interactions with the TALK-1 channel and found that an interaction with iOPN increased β-cell TALK-1 K+ currents. The TALK-1/iOPN complex caused Vm hyperpolarization and reduced β-cell glucose-stimulated Ca2+ influx, which is predicted to inhibit GSIS.
0 Communities
1 Members
0 Resources
16 MeSH Terms
An interplay between the serotonin transporter (SERT) and 5-HT receptors controls stimulus-secretion coupling in sympathoadrenal chromaffin cells.
Brindley RL, Bauer MB, Blakely RD, Currie KPM
(2016) Neuropharmacology 110: 438-448
MeSH Terms: Adrenal Glands, Animals, Calcium, Calcium Channels, N-Type, Cations, Divalent, Cells, Cultured, Chromaffin Cells, Exocytosis, Male, Membrane Potentials, Mice, Inbred C57BL, Mice, Knockout, Potassium Channels, Voltage-Gated, Receptors, Serotonin, Serotonin, Serotonin Agents, Serotonin Plasma Membrane Transport Proteins
Show Abstract · Added August 22, 2016
Adrenal chromaffin cells (ACCs), the neuroendocrine arm of the sympathetic nervous system, secrete catecholamines to mediate the physiological response to stress. Although ACCs do not synthesize 5-HT, they express the serotonin transporter (SERT). Genetic variations in SERT are linked to several CNS disorders but the role(s) of SERT/5-HT in ACCs has remained unclear. Adrenal glands from wild-type mice contained 5-HT at ≈ 750 fold lower abundance than adrenaline, and in SERT(-/-) mice this was reduced by ≈80% with no change in catecholamines. Carbon fibre amperometry showed that SERT modulated the ability of 5-HT1A receptors to inhibit exocytosis. 5-HT reduced the number of amperometric spikes (vesicular fusion events) evoked by KCl in SERT(-/-) cells and wild-type cells treated with escitalopram, a SERT antagonist. The 5-HT1A receptor antagonist WAY100635 blocked the inhibition by 5-HT which was mimicked by the 5-HT1A agonist 8-OH-DPAT but not the 5-HT1B agonist CP93129. There was no effect on voltage-gated Ca(2+) channels, K(+) channels, or intracellular [Ca(2+)] handling, showing the 5-HT receptors recruit an atypical inhibitory mechanism. Spike charge and kinetics were not altered by 5-HT receptors but were reduced in SERT(-/-) cells compared to wild-type cells. Our data reveal a novel role for SERT and suggest that adrenal chromaffin cells might be a previously unrecognized hub for serotonergic control of the sympathetic stress response.
Copyright © 2016 Elsevier Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Comparison of γ-Aminobutyric Acid, Type A (GABAA), Receptor αβγ and αβδ Expression Using Flow Cytometry and Electrophysiology: EVIDENCE FOR ALTERNATIVE SUBUNIT STOICHIOMETRIES AND ARRANGEMENTS.
Botzolakis EJ, Gurba KN, Lagrange AH, Feng HJ, Stanic AK, Hu N, Macdonald RL
(2016) J Biol Chem 291: 20440-61
MeSH Terms: Epilepsy, Flow Cytometry, Gene Expression Regulation, HEK293 Cells, Humans, Membrane Potentials, Protein Subunits, Receptors, GABA
Show Abstract · Added March 14, 2018
The subunit stoichiometry and arrangement of synaptic αβγ GABAA receptors are generally accepted as 2α:2β:1γ with a β-α-γ-β-α counterclockwise configuration, respectively. Whether extrasynaptic αβδ receptors adopt the analogous β-α-δ-β-α subunit configuration remains controversial. Using flow cytometry, we evaluated expression levels of human recombinant γ2 and δ subunits when co-transfected with α1 and/or β2 subunits in HEK293T cells. Nearly identical patterns of γ2 and δ subunit expression were observed as follows: both required co-transfection with α1 and β2 subunits for maximal expression; both were incorporated into receptors primarily at the expense of β2 subunits; and both yielded similar FRET profiles when probed for subunit adjacency, suggesting similar underlying subunit arrangements. However, because of a slower rate of δ subunit degradation, 10-fold less δ subunit cDNA was required to recapitulate γ2 subunit expression patterns and to eliminate the functional signature of α1β2 receptors. Interestingly, titrating γ2 or δ subunit cDNA levels progressively altered GABA-evoked currents, revealing more than one kinetic profile for both αβγ and αβδ receptors. This raised the possibility of alternative receptor isoforms, a hypothesis confirmed using concatameric constructs for αβγ receptors. Taken together, our results suggest a limited cohort of alternative subunit arrangements in addition to canonical β-α-γ/δ-β-α receptors, including β-α-γ/δ-α-α receptors at lower levels of γ2/δ expression and β-α-γ/δ-α-γ/δ receptors at higher levels of expression. These findings provide important insight into the role of GABAA receptor subunit under- or overexpression in disease states such as genetic epilepsies.
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
8 MeSH Terms
ML418: The First Selective, Sub-Micromolar Pore Blocker of Kir7.1 Potassium Channels.
Swale DR, Kurata H, Kharade SV, Sheehan J, Raphemot R, Voigtritter KR, Figueroa EE, Meiler J, Blobaum AL, Lindsley CW, Hopkins CR, Denton JS
(2016) ACS Chem Neurosci 7: 1013-23
MeSH Terms: Animals, Dose-Response Relationship, Drug, HEK293 Cells, Humans, Membrane Potentials, Models, Molecular, Mutagenesis, Site-Directed, Mutation, Patch-Clamp Techniques, Potassium, Potassium Channel Blockers, Potassium Channels, Inwardly Rectifying, Structure-Activity Relationship, Time Factors, Transfection
Show Abstract · Added April 8, 2017
The inward rectifier potassium (Kir) channel Kir7.1 (KCNJ13) has recently emerged as a key regulator of melanocortin signaling in the brain, electrolyte homeostasis in the eye, and uterine muscle contractility during pregnancy. The pharmacological tools available for exploring the physiology and therapeutic potential of Kir7.1 have been limited to relatively weak and nonselective small-molecule inhibitors. Here, we report the discovery in a fluorescence-based high-throughput screen of a novel Kir7.1 channel inhibitor, VU714. Site-directed mutagenesis of pore-lining amino acid residues identified glutamate 149 and alanine 150 as essential determinants of VU714 activity. Lead optimization with medicinal chemistry generated ML418, which exhibits sub-micromolar activity (IC50 = 310 nM) and superior selectivity over other Kir channels (at least 17-fold selective over Kir1.1, Kir2.1, Kir2.2, Kir2.3, Kir3.1/3.2, and Kir4.1) except for Kir6.2/SUR1 (equally potent). Evaluation in the EuroFins Lead Profiling panel of 64 GPCRs, ion-channels, and transporters for off-target activity of ML418 revealed a relatively clean ancillary pharmacology. While ML418 exhibited low CLHEP in human microsomes which could be modulated with lipophilicity adjustments, it showed high CLHEP in rat microsomes regardless of lipophilicity. A subsequent in vivo PK study of ML418 by intraperitoneal (IP) administration (30 mg/kg dosage) revealed a suitable PK profile (Cmax = 0.20 μM and Tmax = 3 h) and favorable CNS distribution (mouse brain/plasma Kp of 10.9 to support in vivo studies. ML418, which represents the current state-of-the-art in Kir7.1 inhibitors, should be useful for exploring the physiology of Kir7.1 in vitro and in vivo.
1 Communities
2 Members
0 Resources
15 MeSH Terms
Hyperpolarization-independent maturation and refinement of GABA/glycinergic connections in the auditory brain stem.
Lee H, Bach E, Noh J, Delpire E, Kandler K
(2016) J Neurophysiol 115: 1170-82
MeSH Terms: Animals, GABAergic Neurons, Glycine, Membrane Potentials, Mice, Neurogenesis, Superior Olivary Complex, Symporters, Synapses, gamma-Aminobutyric Acid
Show Abstract · Added May 3, 2017
During development GABA and glycine synapses are initially excitatory before they gradually become inhibitory. This transition is due to a developmental increase in the activity of neuronal potassium-chloride cotransporter 2 (KCC2), which shifts the chloride equilibrium potential (ECl) to values more negative than the resting membrane potential. While the role of early GABA and glycine depolarizations in neuronal development has become increasingly clear, the role of the transition to hyperpolarization in synapse maturation and circuit refinement has remained an open question. Here we investigated this question by examining the maturation and developmental refinement of GABA/glycinergic and glutamatergic synapses in the lateral superior olive (LSO), a binaural auditory brain stem nucleus, in KCC2-knockdown mice, in which GABA and glycine remain depolarizing. We found that many key events in the development of synaptic inputs to the LSO, such as changes in neurotransmitter phenotype, strengthening and elimination of GABA/glycinergic connection, and maturation of glutamatergic synapses, occur undisturbed in KCC2-knockdown mice compared with wild-type mice. These results indicate that maturation of inhibitory and excitatory synapses in the LSO is independent of the GABA and glycine depolarization-to-hyperpolarization transition.
Copyright © 2016 the American Physiological Society.
0 Communities
1 Members
0 Resources
10 MeSH Terms
VU0477573: Partial Negative Allosteric Modulator of the Subtype 5 Metabotropic Glutamate Receptor with In Vivo Efficacy.
Nickols HH, Yuh JP, Gregory KJ, Morrison RD, Bates BS, Stauffer SR, Emmitte KA, Bubser M, Peng W, Nedelcovych MT, Thompson A, Lv X, Xiang Z, Daniels JS, Niswender CM, Lindsley CW, Jones CK, Conn PJ
(2016) J Pharmacol Exp Ther 356: 123-36
MeSH Terms: Allosteric Regulation, Animals, Anti-Anxiety Agents, Astrocytes, Behavior, Animal, Brain, Dose-Response Relationship, Drug, Drug Discovery, GABA Agonists, HEK293 Cells, Humans, Inositol Phosphates, MAP Kinase Signaling System, Membrane Potentials, Mice, Mice, Inbred C57BL, Picolinic Acids, Pyridines, Radioligand Assay, Rats, Receptor, Metabotropic Glutamate 5, Synaptic Transmission
Show Abstract · Added February 18, 2016
Negative allosteric modulators (NAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) have potential applications in the treatment of fragile X syndrome, levodopa-induced dyskinesia in Parkinson disease, Alzheimer disease, addiction, and anxiety; however, clinical and preclinical studies raise concerns that complete blockade of mGlu5 and inverse agonist activity of current mGlu5 NAMs contribute to adverse effects that limit the therapeutic use of these compounds. We report the discovery and characterization of a novel mGlu5 NAM, N,N-diethyl-5-((3-fluorophenyl)ethynyl)picolinamide (VU0477573) that binds to the same allosteric site as the prototypical mGlu5 NAM MPEP but displays weak negative cooperativity. Because of this weak cooperativity, VU0477573 acts as a "partial NAM" so that full occupancy of the MPEP site does not completely inhibit maximal effects of mGlu5 agonists on intracellular calcium mobilization, inositol phosphate (IP) accumulation, or inhibition of synaptic transmission at the hippocampal Schaffer collateral-CA1 synapse. Unlike previous mGlu5 NAMs, VU0477573 displays no inverse agonist activity assessed using measures of effects on basal [(3)H]inositol phosphate (IP) accumulation. VU0477573 acts as a full NAM when measuring effects on mGlu5-mediated extracellular signal-related kinases 1/2 phosphorylation, which may indicate functional bias. VU0477573 exhibits an excellent pharmacokinetic profile and good brain penetration in rodents and provides dose-dependent full mGlu5 occupancy in the central nervous system (CNS) with systemic administration. Interestingly, VU0477573 shows robust efficacy, comparable to the mGlu5 NAM MTEP, in models of anxiolytic activity at doses that provide full CNS occupancy of mGlu5 and demonstrate an excellent CNS occupancy-efficacy relationship. VU0477573 provides an exciting new tool to investigate the efficacy of partial NAMs in animal models.
Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
0 Communities
1 Members
0 Resources
22 MeSH Terms
Reduction of thalamic and cortical Ih by deletion of TRIP8b produces a mouse model of human absence epilepsy.
Heuermann RJ, Jaramillo TC, Ying SW, Suter BA, Lyman KA, Han Y, Lewis AS, Hampton TG, Shepherd GMG, Goldstein PA, Chetkovich DM
(2016) Neurobiol Dis 85: 81-92
MeSH Terms: Animals, Blotting, Western, Cerebral Cortex, Disease Models, Animal, Electrocardiography, Electrocorticography, Electrodes, Implanted, Epilepsy, Absence, Immunohistochemistry, Male, Membrane Potentials, Membrane Proteins, Mice, Knockout, Motor Activity, Neurons, Patch-Clamp Techniques, Peroxins, Rotarod Performance Test, Sequence Deletion, Thalamus, Tissue Culture Techniques
Show Abstract · Added April 2, 2019
Absence seizures occur in several types of human epilepsy and result from widespread, synchronous feedback between the cortex and thalamus that produces brief episodes of loss of consciousness. Genetic rodent models have been invaluable for investigating the pathophysiological basis of these seizures. Here, we identify tetratricopeptide-containing Rab8b-interacting protein (TRIP8b) knockout mice as a new model of absence epilepsy, featuring spontaneous spike-wave discharges on electroencephalography (EEG) that are the electrographic hallmark of absence seizures. TRIP8b is an auxiliary subunit of the hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels, which have previously been implicated in the pathogenesis of absence seizures. In contrast to mice lacking the pore-forming HCN channel subunit HCN2, TRIP8b knockout mice exhibited normal cardiac and motor function and a less severe seizure phenotype. Evaluating the circuit that underlies absence seizures, we found that TRIP8b knockout mice had significantly reduced HCN channel expression and function in thalamic-projecting cortical layer 5b neurons and thalamic relay neurons, but preserved function in inhibitory neurons of the reticular thalamic nucleus. Our results expand the known roles of TRIP8b and provide new insight into the region-specific functions of TRIP8b and HCN channels in constraining cortico-thalamo-cortical excitability.
Copyright © 2015 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Type 2 Diabetes-Associated K+ Channel TALK-1 Modulates β-Cell Electrical Excitability, Second-Phase Insulin Secretion, and Glucose Homeostasis.
Vierra NC, Dadi PK, Jeong I, Dickerson M, Powell DR, Jacobson DA
(2015) Diabetes 64: 3818-28
MeSH Terms: Animals, Blood Glucose, Diabetes Mellitus, Type 2, Homeostasis, Humans, Insulin, Insulin Secretion, Insulin-Secreting Cells, Male, Membrane Potentials, Mice, Potassium Channels, Tandem Pore Domain
Show Abstract · Added February 22, 2016
Two-pore domain K+ (K2P) channels play an important role in tuning β-cell glucose-stimulated insulin secretion (GSIS). The K2P channel TWIK-related alkaline pH-activated K2P (TALK)-1 is linked to type 2 diabetes risk through a coding sequence polymorphism (rs1535500); however, its physiological function has remained elusive. Here, we show that TALK-1 channels are expressed in mouse and human β-cells, where they serve as key regulators of electrical excitability and GSIS. We find that the rs1535500 polymorphism, which results in an alanine-to-glutamate substitution in the C-terminus of human TALK-1, increases channel activity. Genetic ablation of TALK-1 results in β-cell membrane potential depolarization, increased islet Ca2+ influx, and enhanced second-phase GSIS. Moreover, mice lacking TALK-1 channels are resistant to high-fat diet-induced elevations in fasting glycemia. These findings reveal TALK-1 channels as important modulators of second-phase insulin secretion and suggest a clinically relevant mechanism for rs1535500, which may increase type 2 diabetes risk by limiting GSIS.
© 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Identification and characterization of ML352: a novel, noncompetitive inhibitor of the presynaptic choline transporter.
Ennis EA, Wright J, Retzlaff CL, McManus OB, Lin Z, Huang X, Wu M, Li M, Daniels JS, Lindsley CW, Hopkins CR, Blakely RD
(2015) ACS Chem Neurosci 6: 417-27
MeSH Terms: Animals, Benzamides, Choline, Dose-Response Relationship, Drug, Enzyme Inhibitors, Gene Expression Regulation, HEK293 Cells, Hemicholinium 3, Humans, Isoxazoles, Male, Membrane Potentials, Membrane Transport Proteins, Mice, Mice, Inbred C57BL, Models, Biological, Mutation, Neural Inhibition, Prosencephalon, Protein Binding, Rats, Rats, Sprague-Dawley, Synaptosomes
Show Abstract · Added February 12, 2015
The high-affinity choline transporter (CHT) is the rate-limiting determinant of acetylcholine (ACh) synthesis, yet the transporter remains a largely undeveloped target for the detection and manipulation of synaptic cholinergic signaling. To expand CHT pharmacology, we pursued a high-throughput screen for novel CHT-targeted small molecules based on the electrogenic properties of transporter-mediated choline transport. In this effort, we identified five novel, structural classes of CHT-specific inhibitors. Chemical diversification and functional analysis of one of these classes identified ML352 as a high-affinity (Ki = 92 nM) and selective CHT inhibitor. At concentrations that fully antagonized CHT in transfected cells and nerve terminal preparations, ML352 exhibited no inhibition of acetylcholinesterase (AChE) or cholineacetyltransferase (ChAT) and also lacked activity at dopamine, serotonin, and norepinephrine transporters, as well as many receptors and ion channels. ML352 exhibited noncompetitive choline uptake inhibition in intact cells and synaptosomes and reduced the apparent density of hemicholinium-3 (HC-3) binding sites in membrane assays, suggesting allosteric transporter interactions. Pharmacokinetic studies revealed limited in vitro metabolism and significant CNS penetration, with features predicting rapid clearance. ML352 represents a novel, potent, and specific tool for the manipulation of CHT, providing a possible platform for the development of cholinergic imaging and therapeutic agents.
0 Communities
1 Members
0 Resources
23 MeSH Terms