Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 16

Publication Record

Connections

Selective mTORC2 Inhibitor Therapeutically Blocks Breast Cancer Cell Growth and Survival.
Werfel TA, Wang S, Jackson MA, Kavanaugh TE, Joly MM, Lee LH, Hicks DJ, Sanchez V, Ericsson PG, Kilchrist KV, Dimobi SC, Sarett SM, Brantley-Sieders DM, Cook RS, Duvall CL
(2018) Cancer Res 78: 1845-1858
MeSH Terms: Animals, Antineoplastic Agents, Cell Proliferation, Cell Survival, Disease Models, Animal, Female, Humans, Lapatinib, Mechanistic Target of Rapamycin Complex 2, Mice, Mice, Inbred BALB C, Mice, Nude, Nanoparticles, Protein Kinase Inhibitors, RNA, Small Interfering, Rapamycin-Insensitive Companion of mTOR Protein, Receptor, ErbB-2, Triple Negative Breast Neoplasms, Xenograft Model Antitumor Assays
Show Abstract · Added March 14, 2018
Small-molecule inhibitors of the mTORC2 kinase (torkinibs) have shown efficacy in early clinical trials. However, the torkinibs under study also inhibit the other mTOR-containing complex mTORC1. While mTORC1/mTORC2 combined inhibition may be beneficial in cancer cells, recent reports describe compensatory cell survival upon mTORC1 inhibition due to loss of negative feedback on PI3K, increased autophagy, and increased macropinocytosis. Genetic models suggest that selective mTORC2 inhibition would be effective in breast cancers, but the lack of selective small-molecule inhibitors of mTORC2 have precluded testing of this hypothesis to date. Here we report the engineering of a nanoparticle-based RNAi therapeutic that can effectively silence the mTORC2 obligate cofactor Rictor. Nanoparticle-based Rictor ablation in HER2-amplified breast tumors was achieved following intratumoral and intravenous delivery, decreasing Akt phosphorylation and increasing tumor cell killing. Selective mTORC2 inhibition , combined with the HER2 inhibitor lapatinib, decreased the growth of HER2-amplified breast cancers to a greater extent than either agent alone, suggesting that mTORC2 promotes lapatinib resistance, but is overcome by mTORC2 inhibition. Importantly, selective mTORC2 inhibition was effective in a triple-negative breast cancer (TNBC) model, decreasing Akt phosphorylation and tumor growth, consistent with our findings that RICTOR mRNA correlates with worse outcome in patients with basal-like TNBC. Together, our results offer preclinical validation of a novel RNAi delivery platform for therapeutic gene ablation in breast cancer, and they show that mTORC2-selective targeting is feasible and efficacious in this disease setting. This study describes a nanomedicine to effectively inhibit the growth regulatory kinase mTORC2 in a preclinical model of breast cancer, targeting an important pathogenic enzyme in that setting that has been undruggable to date. .
©2018 American Association for Cancer Research.
0 Communities
2 Members
0 Resources
19 MeSH Terms
Loss of mTORC2 signaling in oligodendrocyte precursor cells delays myelination.
Grier MD, West KL, Kelm ND, Fu C, Does MD, Parker B, McBrier E, Lagrange AH, Ess KC, Carson RP
(2017) PLoS One 12: e0188417
MeSH Terms: Animals, Cell Differentiation, Cell Proliferation, Central Nervous System, Gene Expression Regulation, Developmental, Mechanistic Target of Rapamycin Complex 1, Mechanistic Target of Rapamycin Complex 2, Mice, Mice, Knockout, Myelin Sheath, Oligodendrocyte Precursor Cells, Rapamycin-Insensitive Companion of mTOR Protein, Signal Transduction, White Matter
Show Abstract · Added March 14, 2018
Myelin abnormalities are increasingly being recognized as an important component of a number of neurologic developmental disorders. The integration of many signaling pathways and cell types are critical for correct myelinogenesis. The PI3-K and mechanistic target of rapamycin (mTOR) pathways have been found to play key roles. mTOR is found within two distinct complexes, mTORC1 and mTORC2. mTORC1 activity has been shown to play a major role during myelination, while the role of mTORC2 is not yet well understood. To determine the role of mTORC2 signaling in myelinogenesis, we generated a mouse lacking the critical mTORC2 component Rictor in oligodendrocyte precursors (OPCs). Targeted deletion of Rictor in these cells decreases and delays the expression of myelin related proteins and reduces the size of cerebral white matter tracts. This is developmentally manifest as a transient reduction in myelinated axon density and g-ratio. OPC cell number is reduced at birth without detectable change in proliferation with proportional reductions in mature oligodendrocyte number at P15. The total number of oligodendrocytes as well as extent of myelination, does improve over time. Adult conditional knock-out (CKO) animals do not demonstrate a behavioral phenotype likely due in part to preserved axonal conduction velocities. These data support and extend prior studies demonstrating an important but transient contribution of mTORC2 signaling to myelin development.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Two distinct mTORC2-dependent pathways converge on Rac1 to drive breast cancer metastasis.
Morrison Joly M, Williams MM, Hicks DJ, Jones B, Sanchez V, Young CD, Sarbassov DD, Muller WJ, Brantley-Sieders D, Cook RS
(2017) Breast Cancer Res 19: 74
MeSH Terms: Animals, Breast Neoplasms, Cell Line, Tumor, Cell Movement, Disease Models, Animal, Female, Gene Amplification, Heterografts, Humans, Mechanistic Target of Rapamycin Complex 2, Mice, Mice, Transgenic, Neoplasm Metastasis, Neoplasm Staging, Prognosis, Proto-Oncogene Proteins c-akt, Rapamycin-Insensitive Companion of mTOR Protein, Receptor, ErbB-2, Signal Transduction, rac1 GTP-Binding Protein, rho Guanine Nucleotide Dissociation Inhibitor beta
Show Abstract · Added April 15, 2019
BACKGROUND - The importance of the mTOR complex 2 (mTORC2) signaling complex in tumor progression is becoming increasingly recognized. HER2-amplified breast cancers use Rictor/mTORC2 signaling to drive tumor formation, tumor cell survival and resistance to human epidermal growth factor receptor 2 (HER2)-targeted therapy. Cell motility, a key step in the metastatic process, can be activated by mTORC2 in luminal and triple negative breast cancer cell lines, but its role in promoting metastases from HER2-amplified breast cancers is not yet clear.
METHODS - Because Rictor is an obligate cofactor of mTORC2, we genetically engineered Rictor ablation or overexpression in mouse and human HER2-amplified breast cancer models for modulation of mTORC2 activity. Signaling through mTORC2-dependent pathways was also manipulated using pharmacological inhibitors of mTOR, Akt, and Rac. Signaling was assessed by western analysis and biochemical pull-down assays specific for Rac-GTP and for active Rac guanine nucleotide exchange factors (GEFs). Metastases were assessed from spontaneous tumors and from intravenously delivered tumor cells. Motility and invasion of cells was assessed using Matrigel-coated transwell assays.
RESULTS - We found that Rictor ablation potently impaired, while Rictor overexpression increased, metastasis in spontaneous and intravenously seeded models of HER2-overexpressing breast cancers. Additionally, migration and invasion of HER2-amplified human breast cancer cells was diminished in the absence of Rictor, or upon pharmacological mTOR kinase inhibition. Active Rac1 was required for Rictor-dependent invasion and motility, which rescued invasion/motility in Rictor depleted cells. Rictor/mTORC2-dependent dampening of the endogenous Rac1 inhibitor RhoGDI2, a factor that correlated directly with increased overall survival in HER2-amplified breast cancer patients, promoted Rac1 activity and tumor cell invasion/migration. The mTORC2 substrate Akt did not affect RhoGDI2 dampening, but partially increased Rac1 activity through the Rac-GEF Tiam1, thus partially rescuing cell invasion/motility. The mTORC2 effector protein kinase C (PKC)α did rescue Rictor-mediated RhoGDI2 downregulation, partially rescuing Rac-guanosine triphosphate (GTP) and migration/motility.
CONCLUSION - These findings suggest that mTORC2 uses two coordinated pathways to activate cell invasion/motility, both of which converge on Rac1. Akt signaling activates Rac1 through the Rac-GEF Tiam1, while PKC signaling dampens expression of the endogenous Rac1 inhibitor, RhoGDI2.
0 Communities
1 Members
0 Resources
MeSH Terms
Distinct roles for the mTOR pathway in postnatal morphogenesis, maturation and function of pancreatic islets.
Sinagoga KL, Stone WJ, Schiesser JV, Schweitzer JI, Sampson L, Zheng Y, Wells JM
(2017) Development 144: 2402-2414
MeSH Terms: Animals, Animals, Newborn, Cell Aggregation, Islets of Langerhans, Mechanistic Target of Rapamycin Complex 1, Mechanistic Target of Rapamycin Complex 2, Mice, Models, Biological, Morphogenesis, Multiprotein Complexes, Mutation, Signal Transduction, TOR Serine-Threonine Kinases
Show Abstract · Added February 6, 2018
While much is known about the molecular pathways that regulate embryonic development and adult homeostasis of the endocrine pancreas, little is known about what regulates early postnatal development and maturation of islets. Given that birth marks the first exposure to enteral nutrition, we investigated how nutrient-regulated signaling pathways influence postnatal islet development in mice. We performed loss-of-function studies of mechanistic target of rapamycin (mTOR), a highly conserved kinase within a nutrient-sensing pathway known to regulate cellular growth, morphogenesis and metabolism. Deletion of Mtor in pancreatic endocrine cells had no significant effect on their embryonic development. However, within the first 2 weeks after birth, mTOR-deficient islets became dysmorphic, β-cell maturation and function were impaired, and animals lost islet mass. Moreover, we discovered that these distinct functions of mTOR are mediated by separate downstream branches of the pathway, in that mTORC1 (with adaptor protein Raptor) is the main complex mediating the maturation and function of islets, whereas mTORC2 (with adaptor protein Rictor) impacts islet mass and architecture. Taken together, these findings suggest that nutrient sensing may be an essential trigger for postnatal β-cell maturation and islet development.
© 2017. Published by The Company of Biologists Ltd.
0 Communities
1 Members
0 Resources
13 MeSH Terms
mTORC1 and mTORC2 in cancer and the tumor microenvironment.
Kim LC, Cook RS, Chen J
(2017) Oncogene 36: 2191-2201
MeSH Terms: Animals, Humans, Mechanistic Target of Rapamycin Complex 1, Mechanistic Target of Rapamycin Complex 2, Multiprotein Complexes, Neoplasms, TOR Serine-Threonine Kinases, Tumor Microenvironment
Show Abstract · Added March 29, 2017
The mammalian target of rapamycin (mTOR) is a crucial signaling node that integrates environmental cues to regulate cell survival, proliferation and metabolism, and is often deregulated in human cancer. mTOR kinase acts in two functionally distinct complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2), whose activities and substrate specificities are regulated by complex co-factors. Deregulation of this centralized signaling pathway has been associated with a variety of human diseases including diabetes, neurodegeneration and cancer. Although mTORC1 signaling has been extensively studied in cancer, recent discoveries indicate a subset of human cancers harboring amplifications in mTORC2-specific genes as the only actionable genomic alterations, suggesting a distinct role for mTORC2 in cancer as well. This review will summarize recent advances in dissecting the relative contributions of mTORC1 versus mTORC2 in cancer, their role in tumor-associated blood vessels and tumor immunity, and provide an update on mTOR inhibitors.
1 Communities
2 Members
0 Resources
8 MeSH Terms
Macrophage Apoptosis and Efferocytosis in the Pathogenesis of Atherosclerosis.
Linton MF, Babaev VR, Huang J, Linton EF, Tao H, Yancey PG
(2016) Circ J 80: 2259-2268
MeSH Terms: Animals, Atherosclerosis, Endoplasmic Reticulum Stress, Humans, I-kappa B Kinase, Isoenzymes, Macrophages, Mechanistic Target of Rapamycin Complex 2, Mitogen-Activated Protein Kinase 8, Multiprotein Complexes, Proto-Oncogene Proteins c-akt, Signal Transduction, TOR Serine-Threonine Kinases, Unfolded Protein Response
Show Abstract · Added April 10, 2018
Macrophage apoptosis and the ability of macrophages to clean up dead cells, a process called efferocytosis, are crucial determinants of atherosclerosis lesion progression and plaque stability. Environmental stressors initiate endoplasmic reticulum (ER) stress and activate the unfolded protein response (UPR). Unresolved ER stress with activation of the UPR initiates apoptosis. Macrophages are resistant to apoptotic stimuli, because of activity of the PI3K/Akt pathway. Macrophages express 3 Akt isoforms, Akt1, Akt2 and Akt3, which are products of distinct but homologous genes. Akt displays isoform-specific effects on atherogenesis, which vary with different vascular cell types. Loss of macrophage Akt2 promotes the anti-inflammatory M2 phenotype and reduces atherosclerosis. However, Akt isoforms are redundant with regard to apoptosis. c-Jun NH-terminal kinase (JNK) is a pro-apoptotic effector of the UPR, and the JNK1 isoform opposes anti-apoptotic Akt signaling. Loss of JNK1 in hematopoietic cells protects macrophages from apoptosis and accelerates early atherosclerosis. IκB kinase α (IKKα, a member of the serine/threonine protein kinase family) plays an important role in mTORC2-mediated Akt signaling in macrophages, and IKKα deficiency reduces macrophage survival and suppresses early atherosclerosis. Efferocytosis involves the interaction of receptors, bridging molecules, and apoptotic cell ligands. Scavenger receptor class B type I is a critical mediator of macrophage efferocytosis via the Src/PI3K/Rac1 pathway in atherosclerosis. Agonists that resolve inflammation offer promising therapeutic potential to promote efferocytosis and prevent atherosclerotic clinical events. (Circ J 2016; 80: 2259-2268).
0 Communities
1 Members
0 Resources
MeSH Terms
Rictor/mTORC2 Drives Progression and Therapeutic Resistance of HER2-Amplified Breast Cancers.
Morrison Joly M, Hicks DJ, Jones B, Sanchez V, Estrada MV, Young C, Williams M, Rexer BN, Sarbassov dos D, Muller WJ, Brantley-Sieders D, Cook RS
(2016) Cancer Res 76: 4752-64
MeSH Terms: Animals, Blotting, Western, Breast Neoplasms, Carrier Proteins, Disease Progression, Drug Resistance, Neoplasm, Female, Heterografts, Humans, Kaplan-Meier Estimate, Mechanistic Target of Rapamycin Complex 2, Mice, Mice, Inbred BALB C, Mice, Nude, Multiprotein Complexes, Rapamycin-Insensitive Companion of mTOR Protein, Receptor, ErbB-2, Signal Transduction, TOR Serine-Threonine Kinases, Tissue Array Analysis
Show Abstract · Added April 15, 2019
HER2 overexpression drives Akt signaling and cell survival and HER2-enriched breast tumors have a poor outcome when Akt is upregulated. Akt is activated by phosphorylation at T308 via PI3K and S473 via mTORC2. The importance of PI3K-activated Akt signaling is well documented in HER2-amplified breast cancer models, but the significance of mTORC2-activated Akt signaling in this setting remains uncertain. We report here that the mTORC2 obligate cofactor Rictor is enriched in HER2-amplified samples, correlating with increased phosphorylation at S473 on Akt. In invasive breast cancer specimens, Rictor expression was upregulated significantly compared with nonmalignant tissues. In a HER2/Neu mouse model of breast cancer, genetic ablation of Rictor decreased cell survival and phosphorylation at S473 on Akt, delaying tumor latency, penetrance, and burden. In HER2-amplified cells, exposure to an mTORC1/2 dual kinase inhibitor decreased Akt-dependent cell survival, including in cells resistant to lapatinib, where cytotoxicity could be restored. We replicated these findings by silencing Rictor in breast cancer cell lines, but not silencing the mTORC1 cofactor Raptor (RPTOR). Taken together, our findings establish that Rictor/mTORC2 signaling drives Akt-dependent tumor progression in HER2-amplified breast cancers, rationalizing clinical investigation of dual mTORC1/2 kinase inhibitors and developing mTORC2-specific inhibitors for use in this setting. Cancer Res; 76(16); 4752-64. ©2016 AACR.
©2016 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
MeSH Terms
Epidermis-Derived Semaphorin Promotes Dendrite Self-Avoidance by Regulating Dendrite-Substrate Adhesion in Drosophila Sensory Neurons.
Meltzer S, Yadav S, Lee J, Soba P, Younger SH, Jin P, Zhang W, Parrish J, Jan LY, Jan YN
(2016) Neuron 89: 741-55
MeSH Terms: Animals, Animals, Genetically Modified, Cell Communication, Dendrites, Drosophila, Drosophila Proteins, Epidermis, Focal Adhesion Kinase 1, Gene Expression Regulation, Developmental, Green Fluorescent Proteins, Immunoprecipitation, Larva, Mechanistic Target of Rapamycin Complex 2, Molecular Biology, Multiprotein Complexes, Mutation, Nerve Tissue Proteins, Receptors, Cell Surface, Semaphorins, Sensory Receptor Cells, TOR Serine-Threonine Kinases, Transfection
Show Abstract · Added February 9, 2016
Precise patterning of dendritic arbors is critical for the wiring and function of neural circuits. Dendrite-extracellular matrix (ECM) adhesion ensures that the dendrites of Drosophila dendritic arborization (da) sensory neurons are properly restricted in a 2D space, and thereby facilitates contact-mediated dendritic self-avoidance and tiling. However, the mechanisms regulating dendrite-ECM adhesion in vivo are poorly understood. Here, we show that mutations in the semaphorin ligand sema-2b lead to a dramatic increase in self-crossing of dendrites due to defects in dendrite-ECM adhesion, resulting in a failure to confine dendrites to a 2D plane. Furthermore, we find that Sema-2b is secreted from the epidermis and signals through the Plexin B receptor in neighboring neurons. Importantly, we find that Sema-2b/PlexB genetically and physically interacts with TORC2 complex, Tricornered (Trc) kinase, and integrins. These results reveal a novel role for semaphorins in dendrite patterning and illustrate how epidermal-derived cues regulate neural circuit assembly.
Copyright © 2016 Elsevier Inc. All rights reserved.
1 Communities
0 Members
0 Resources
22 MeSH Terms
Macrophage IKKα Deficiency Suppresses Akt Phosphorylation, Reduces Cell Survival, and Decreases Early Atherosclerosis.
Babaev VR, Ding L, Zhang Y, May JM, Lin PC, Fazio S, Linton MF
(2016) Arterioscler Thromb Vasc Biol 36: 598-607
MeSH Terms: Animals, Apoptosis, Atherosclerosis, Cell Survival, Cells, Cultured, Diet, Western, Disease Models, Animal, Female, I-kappa B Kinase, Inflammation Mediators, Liver, Liver Transplantation, Macrophages, Peritoneal, Male, Mechanistic Target of Rapamycin Complex 2, Mice, Inbred C57BL, Mice, Knockout, Multiprotein Complexes, Phosphorylation, Protein Kinase Inhibitors, Proto-Oncogene Proteins c-akt, Receptors, LDL, Signal Transduction, TOR Serine-Threonine Kinases, Time Factors
Show Abstract · Added February 22, 2016
OBJECTIVE - The IκB kinase (IKK) is an enzyme complex that initiates the nuclear factor κB transcription factor cascade, which is important in regulating multiple cellular responses. IKKα is directly associated with 2 major prosurvival pathways, PI3K/Akt and nuclear factor κB, but its role in cell survival is not clear. Macrophages play critical roles in the pathogenesis of atherosclerosis, yet the impact of IKKα signaling on macrophage survival and atherogenesis remains unclear.
APPROACH AND RESULTS - Here, we demonstrate that genetic IKKα deficiency, as well as pharmacological inhibition of IKK, in mouse macrophages significantly reduces Akt S(473) phosphorylation, which is accompanied by suppression of mTOR complex 2 signaling. Moreover, IKKα null macrophages treated with lipotoxic palmitic acid exhibited early exhaustion of Akt signaling compared with wild-type cells. This was accompanied by a dramatic decrease in the resistance of IKKα(-/-) monocytes and macrophages to different proapoptotic stimuli compared with wild-type cells. In vivo, IKKα deficiency increased macrophage apoptosis in atherosclerotic lesions and decreased early atherosclerosis in both female and male low-density lipoprotein receptor (LDLR)(-/-) mice reconstituted with IKKα(-/-) hematopoietic cells and fed with the Western diet for 8 weeks compared with control LDLR(-/-) mice transplanted with wild-type cells.
CONCLUSIONS - Hematopoietic IKKα deficiency in mouse suppresses Akt signaling, compromising monocyte/macrophage survival and this decreases early atherosclerosis.
© 2016 American Heart Association, Inc.
0 Communities
2 Members
0 Resources
25 MeSH Terms
Treatment of Triple-Negative Breast Cancer with TORC1/2 Inhibitors Sustains a Drug-Resistant and Notch-Dependent Cancer Stem Cell Population.
Bhola NE, Jansen VM, Koch JP, Li H, Formisano L, Williams JA, Grandis JR, Arteaga CL
(2016) Cancer Res 76: 440-52
MeSH Terms: Cell Line, Tumor, Drug Resistance, Neoplasm, Humans, Mechanistic Target of Rapamycin Complex 2, Multiprotein Complexes, Neoplastic Stem Cells, Signal Transduction, TOR Serine-Threonine Kinases, Triple Negative Breast Neoplasms, Xenograft Model Antitumor Assays
Show Abstract · Added March 10, 2016
Approximately 30% of triple-negative breast cancers (TNBC) harbor molecular alterations in PI3K/mTOR signaling, but therapeutic inhibition of this pathway has not been effective. We hypothesized that intrinsic resistance to TORC1/2 inhibition is driven by cancer stem cell (CSC)-like populations that could be targeted to enhance the antitumor action of these drugs. Therefore, we investigated the molecular mechanisms by which PI3K/mTOR inhibitors affect the stem-like properties of TNBC cells. Treatment of established TNBC cell lines with a PI3K/mTOR inhibitor or a TORC1/2 inhibitor increased the expression of CSC markers and mammosphere formation. A CSC-specific PCR array revealed that inhibition of TORC1/2 increased FGF1 and Notch1 expression. Notch1 activity was also induced in TNBC cells treated with TORC1/2 inhibitors and associated with increased mitochondrial metabolism and FGFR1 signaling. Notably, genetic and pharmacologic blockade of Notch1 abrogated the increase in CSC markers, mammosphere formation, and in vivo tumor-initiating capacity induced by TORC1/2 inhibition. These results suggest that targeting the FGFR-mitochondrial metabolism-Notch1 axis prevents resistance to TORC1/2 inhibitors by eradicating drug-resistant CSCs in TNBC, and may thus represent an attractive therapeutic strategy to improve drug responsiveness and efficacy.
©2015 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
10 MeSH Terms