Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 1125

Publication Record

Connections

Intrinsic functional architecture of the non-human primate spinal cord derived from fMRI and electrophysiology.
Wu TL, Yang PF, Wang F, Shi Z, Mishra A, Wu R, Chen LM, Gore JC
(2019) Nat Commun 10: 1416
MeSH Terms: Action Potentials, Animals, Electrophysiological Phenomena, Haplorhini, Humans, Magnetic Resonance Imaging, Physical Stimulation, Reproducibility of Results, Rest, Spinal Cord, Spinal Cord Dorsal Horn, Touch
Show Abstract · Added July 11, 2019
Resting-state functional MRI (rsfMRI) has recently revealed correlated signals in the spinal cord horns of monkeys and humans. However, the interpretation of these rsfMRI correlations as indicators of functional connectivity in the spinal cord remains unclear. Here, we recorded stimulus-evoked and spontaneous spiking activity and local field potentials (LFPs) from monkey spinal cord in order to validate fMRI measures. We found that both BOLD and electrophysiological signals elicited by tactile stimulation co-localized to the ipsilateral dorsal horn. Temporal profiles of stimulus-evoked BOLD signals covaried with LFP and multiunit spiking in a similar way to those observed in the brain. Functional connectivity of dorsal horns exhibited a U-shaped profile along the dorsal-intermediate-ventral axis. Overall, these results suggest that there is an intrinsic functional architecture within the gray matter of a single spinal segment, and that rsfMRI signals at high field directly reflect this underlying spontaneous neuronal activity.
0 Communities
1 Members
0 Resources
MeSH Terms
Characterization of the hemodynamic response function in white matter tracts for event-related fMRI.
Li M, Newton AT, Anderson AW, Ding Z, Gore JC
(2019) Nat Commun 10: 1140
MeSH Terms: Adult, Cerebral Cortex, Cerebrovascular Circulation, Female, Gray Matter, Healthy Volunteers, Hemodynamics, Hemoglobins, Humans, Magnetic Resonance Imaging, Male, Nerve Net, Oxygen, Pattern Recognition, Visual, Stroop Test, White Matter
Show Abstract · Added March 26, 2019
Accurate estimates of the BOLD hemodynamic response function (HRF) are crucial for the interpretation and analysis of event-related functional MRI data. To date, however, there have been no comprehensive measurements of the HRF in white matter (WM) despite increasing evidence that BOLD signals in WM change after a stimulus. We performed an event-related cognitive task (Stroop color-word interference) to measure the HRF in selected human WM pathways. The task was chosen in order to produce robust, distributed centers of activity throughout the cortex. To measure the HRF in WM, fiber tracts were reconstructed between each pair of activated cortical areas. We observed clear task-specific HRFs with reduced magnitudes, delayed onsets and prolonged initial dips in WM tracts compared with activated grey matter, thus calling for significant changes to current standard models for accurately characterizing the HRFs in WM and for modifications of standard methods of analysis of functional imaging data.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Pancreas Volume Declines During the First Year After Diagnosis of Type 1 Diabetes and Exhibits Altered Diffusion at Disease Onset.
Virostko J, Williams J, Hilmes M, Bowman C, Wright JJ, Du L, Kang H, Russell WE, Powers AC, Moore DJ
(2019) Diabetes Care 42: 248-257
MeSH Terms: Adolescent, Adult, Atrophy, Autoantibodies, Case-Control Studies, Child, Child, Preschool, Cohort Studies, Diabetes Mellitus, Type 1, Female, Glucose Tolerance Test, Humans, Magnetic Resonance Imaging, Male, Middle Aged, Organ Size, Pancreas, Time Factors, Young Adult
Show Abstract · Added December 18, 2018
OBJECTIVE - This study investigated the temporal dynamics of pancreas volume and microstructure in children and adolescents with recent-onset type 1 diabetes (T1D) and individuals without diabetes, including a subset expressing autoantibodies associated with the early stages of T1D.
RESEARCH DESIGN AND METHODS - MRI was performed in individuals with recent-onset stage 3 T1D ( = 51; median age 13 years) within 100 days after diagnosis (mean 67 days), 6 months, and 1 year postdiagnosis. Longitudinal MRI measurements were also made in similarly aged control participants ( = 57) and in autoantibody-positive individuals without diabetes ( = 20). The MRI protocol consisted of anatomical imaging to determine pancreas volume and quantitative MRI protocols interrogating tissue microstructure and composition.
RESULTS - Within 100 days of diabetes onset, individuals with T1D had a smaller pancreas (median volume 28.6 mL) than control participants (median volume 48.4 mL; < 0.001), including when normalized by individual weight ( < 0.001). Longitudinal measurements of pancreas volume increased in control participants over the year, consistent with adolescent growth, but pancreas volume declined over the first year after T1D diagnosis ( < 0.001). In multiple autoantibody-positive individuals, the pancreas volume was significantly larger than that of the T1D cohort ( = 0.017) but smaller than that of the control cohort ( = 0.04). Diffusion-weighted MRI showed that individuals with recent-onset T1D had a higher apparent diffusion coefficient ( = 0.012), suggesting a loss of cellular structural integrity, with heterogeneous pancreatic distribution.
CONCLUSIONS - These results indicate that pancreas volume is decreased in stages 1, 2, and 3 of T1D and decreases during the first year after diabetes onset and that this loss of pancreatic volume is accompanied by microstructural changes.
© 2018 by the American Diabetes Association.
1 Communities
3 Members
0 Resources
19 MeSH Terms
Linear Accelerator-Based Stereotactic Radiosurgery for Cranial Intraparenchymal Metastasis of a Malignant Peripheral Nerve Sheath Tumor: Case Report and Review of the Literature.
Fenlon JB, Khattab MH, Ferguson DC, Luo G, Keedy VL, Chambless LB, Kirschner AN
(2019) World Neurosurg 123: 123-127
MeSH Terms: Adult, Brain Neoplasms, Humans, Magnetic Resonance Imaging, Male, Nerve Sheath Neoplasms, Neurofibrosarcoma, Particle Accelerators, Positron-Emission Tomography, Radiosurgery
Show Abstract · Added April 2, 2019
BACKGROUND - Malignant peripheral nerve sheath tumors (MPNSTs) are rare, aggressive soft tissue sarcomas. MPNST intracranial metastasis is exceedingly rare with only 22 documented cases in the literature and, to our knowledge, only 1 case with intraparenchymal brain metastasis. Most have been managed surgically; however, 2 documented cases were treated with Gamma Knife radiosurgery. Excluding this case report, there are no other documented cases of linear accelerator-based stereotactic radiosurgery (SRS) to treat MPNST brain metastasis.
CASE DESCRIPTION - A 41-year-old man with MPNST of the lung initially underwent tumor resection. He developed multiple systemic metastases that were managed with directed radiation therapy. A parietal brain metastasis was treated with linear accelerator-based SRS. Following SRS therapy, the patient was treated with a tropomyosin receptor kinase inhibitor. Complete resolution of brain metastasis was seen on brain magnetic resonance imaging 5 months after treatment with SRS. At 11 months after SRS, there was no evidence of recurrence or progression of the intraparenchymal disease. The patient continued to have stable extracranial disease on his ninth cycle of systemic treatment.
CONCLUSIONS - This report provides important insights into efficacy of linear accelerator-based SRS to treat MPNST brain metastases.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Regionally specific volume deficits along the hippocampal long axis in early and chronic psychosis.
McHugo M, Talati P, Woodward ND, Armstrong K, Blackford JU, Heckers S
(2018) Neuroimage Clin 20: 1106-1114
MeSH Terms: Adult, Aged, Bipolar Disorder, Dentate Gyrus, Early Diagnosis, Female, Hippocampus, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Middle Aged, Psychotic Disorders
Show Abstract · Added March 26, 2019
Previous studies in psychosis patients have shown hippocampal volume deficits across anterior and posterior regions or across subfields, but subfield specific changes in volume along the hippocampal long axis have not been examined. Here, we tested the hypothesis that volume changes exist across the hippocampus in chronic psychosis but only the anterior CA region is affected in early psychosis patients. We analyzed structural MRI data from 179 patients with a non-affective psychotic disorder (94 chronic psychosis; 85 early psychosis) and 167 heathy individuals demographically matched to the chronic and early psychosis samples respectively (82 matched to chronic patients; 85 matched to early patients). We measured hippocampal volumes using Freesurfer 6-derived automated segmentation of both anterior and posterior regions and the CA, dentate gyrus, and subiculum subfields. We found a hippocampal volume deficit in both anterior and posterior regions in chronic psychosis, but this deficit was limited to the anterior hippocampus in early psychosis patients. This volume change was more pronounced in the anterior CA subfield of early psychosis patients than in the dentate gyrus or subiculum. Our findings support existing models of psychosis implicating initial CA dysfunction with later progression to other hippocampal regions and suggest that the anterior hippocampus may be an important target for early interventions.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Resting-state white matter-cortical connectivity in non-human primate brain.
Wu TL, Wang F, Li M, Schilling KG, Gao Y, Anderson AW, Chen LM, Ding Z, Gore JC
(2019) Neuroimage 184: 45-55
MeSH Terms: Animals, Brain, Brain Mapping, Diffusion Tensor Imaging, Gray Matter, Magnetic Resonance Imaging, Neural Pathways, Saimiri, White Matter
Show Abstract · Added September 21, 2018
Numerous studies have used functional magnetic resonance imaging (fMRI) to characterize functional connectivity between cortical regions by analyzing correlations in blood oxygenation level dependent (BOLD) signals in a resting state. However, to date, there have been only a handful of studies reporting resting state BOLD signals in white matter. Nonetheless, a growing number of reports has emerged in recent years suggesting white matter BOLD signals can be reliably detected, though their biophysical origins remain unclear. Moreover, recent studies have identified robust correlations in a resting state between signals from cortex and specific white matter tracts. In order to further validate and interpret these findings, we studied a non-human primate model to investigate resting-state connectivity patterns between parcellated cortical volumes and specific white matter bundles. Our results show that resting-state connectivity patterns between white and gray matter structures are not randomly distributed but share notable similarities with diffusion- and histology-derived anatomic connectivities. This suggests that resting-state BOLD correlations between white matter fiber tracts and the gray matter regions to which they connect are directly related to the anatomic arrangement and density of WM fibers. We also measured how different levels of baseline neural activity, induced by varying levels of anesthesia, modulate these patterns. As anesthesia levels were raised, we observed weakened correlation coefficients between specific white matter tracts and gray matter regions while key features of the connectivity pattern remained similar. Overall, results from this study provide further evidence that neural activity is detectable by BOLD fMRI in both gray and white matter throughout the resting brain. The combined use of gray and white matter functional connectivity could also offer refined full-scale functional parcellation of the entire brain to characterize its functional architecture.
Published by Elsevier Inc.
0 Communities
2 Members
0 Resources
9 MeSH Terms
Self-decoupled radiofrequency coils for magnetic resonance imaging.
Yan X, Gore JC, Grissom WA
(2018) Nat Commun 9: 3481
MeSH Terms: Computer Simulation, Equipment Design, Magnetic Resonance Imaging, Radio Waves, Signal-To-Noise Ratio, Software
Show Abstract · Added March 26, 2019
Arrays of radiofrequency coils are widely used in magnetic resonance imaging to achieve high signal-to-noise ratios and flexible volume coverage, to accelerate scans using parallel reception, and to mitigate field non-uniformity using parallel transmission. However, conventional coil arrays require complex decoupling technologies to reduce electromagnetic coupling between coil elements, which would otherwise amplify noise and limit transmitted power. Here we report a novel self-decoupled RF coil design with a simple structure that requires only an intentional redistribution of electrical impedances around the length of the coil loop. We show that self-decoupled coils achieve high inter-coil isolation between adjacent and non-adjacent elements of loop arrays and mixed arrays of loops and dipoles. Self-decoupled coils are also robust to coil separation, making them attractive for size-adjustable and flexible coil arrays.
0 Communities
1 Members
0 Resources
MeSH Terms
Impact of substance use disorder on gray matter volume in schizophrenia.
Quinn M, McHugo M, Armstrong K, Woodward N, Blackford J, Heckers S
(2018) Psychiatry Res Neuroimaging 280: 9-14
MeSH Terms: Adolescent, Adult, Amygdala, Cerebral Cortex, Diagnosis, Dual (Psychiatry), Female, Frontal Lobe, Gray Matter, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Male, Occipital Lobe, Organ Size, Schizophrenia, Schizophrenic Psychology, Substance-Related Disorders, Young Adult
Show Abstract · Added March 26, 2019
Substance use may confound the study of brain structure in schizophrenia. We used voxel-based morphometry (VBM) to examine whether differences in regional gray matter volumes exist between schizophrenia patients with (n = 92) and without (n = 66) clinically significant cannabis and/or alcohol use histories compared to 88 healthy control subjects. Relative to controls, patients with schizophrenia had reduced gray matter volume in the bilateral precentral gyrus, right medial frontal cortex, right visual cortex, right occipital pole, right thalamus, bilateral amygdala, and bilateral cerebellum regardless of substance use history. Within these regions, we found no volume differences between patients with schizophrenia and a history of cannabis and/or alcohol compared to patients with schizophrenia without a clinically significant substance use history. Our data support the idea that a clinically meaningful history of alcohol or cannabis use does not significantly compound the gray matter deficits associated with schizophrenia.
Copyright © 2018. Published by Elsevier B.V.
0 Communities
1 Members
0 Resources
18 MeSH Terms
Polymer gel dosimetry by nuclear Overhauser enhancement (NOE) magnetic resonance imaging.
Quevedo A, Luo G, Galhardo E, Price M, Nicolucci P, Gore JC, Zu Z
(2018) Phys Med Biol 63: 15NT03
MeSH Terms: Ascorbic Acid, Copper Sulfate, Gelatin, Hydroquinones, Magnetic Resonance Imaging, Methacrylates, Polymers, Radiation Dosimeters, Radiometry
Show Abstract · Added March 26, 2019
The response to radiation of polymer gel dosimeters has previously been measured by magnetic resonance imaging (MRI) in terms of changes in the water transverse relaxation rate (R ) or magnetization transfer (MT) parameters. Here we report a new MRI approach, based on detecting nuclear Overhauser enhancement (NOE) mediated saturation transfer effects, which can also be used to detect radiation and measure dose distributions in MAGIC-f (Methacrylic and Ascorbic Acid and Gelatin Initiated by Copper Solution with formaldehyde) polymer gels. Results show that the NOE effects produced by low powered radiofrequency (RF) irradiation at specific frequencies offset from water may be quantified by appropriate measurements and over a useful range depend linearly on the radiation dose. The NOE effect likely arises from the polymerization of methacrylic acid monomers which become less mobile, facilitating dipolar through-space cross-relaxation and/or relayed magnetization exchange between polymer and water protons. Our study suggests a potential new MRI method for polymer gel dosimetry.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Neural representation of vowel formants in tonotopic auditory cortex.
Fisher JM, Dick FK, Levy DF, Wilson SM
(2018) Neuroimage 178: 574-582
MeSH Terms: Acoustic Stimulation, Adult, Auditory Cortex, Brain Mapping, Female, Humans, Magnetic Resonance Imaging, Male, Phonetics, Speech Perception
Show Abstract · Added March 26, 2019
Speech sounds are encoded by distributed patterns of activity in bilateral superior temporal cortex. However, it is unclear whether speech sounds are topographically represented in cortex, or which acoustic or phonetic dimensions might be spatially mapped. Here, using functional MRI, we investigated the potential spatial representation of vowels, which are largely distinguished from one another by the frequencies of their first and second formants, i.e. peaks in their frequency spectra. This allowed us to generate clear hypotheses about the representation of specific vowels in tonotopic regions of auditory cortex. We scanned participants as they listened to multiple natural tokens of the vowels [ɑ] and [i], which we selected because their first and second formants overlap minimally. Formant-based regions of interest were defined for each vowel based on spectral analysis of the vowel stimuli and independently acquired tonotopic maps for each participant. We found that perception of [ɑ] and [i] yielded differential activation of tonotopic regions corresponding to formants of [ɑ] and [i], such that each vowel was associated with increased signal in tonotopic regions corresponding to its own formants. This pattern was observed in Heschl's gyrus and the superior temporal gyrus, in both hemispheres, and for both the first and second formants. Using linear discriminant analysis of mean signal change in formant-based regions of interest, the identity of untrained vowels was predicted with ∼73% accuracy. Our findings show that cortical encoding of vowels is scaffolded on tonotopy, a fundamental organizing principle of auditory cortex that is not language-specific.
Copyright © 2018 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms