Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 43

Publication Record

Connections

Ornithine Decarboxylase in Macrophages Exacerbates Colitis and Promotes Colitis-Associated Colon Carcinogenesis by Impairing M1 Immune Responses.
Singh K, Coburn LA, Asim M, Barry DP, Allaman MM, Shi C, Washington MK, Luis PB, Schneider C, Delgado AG, Piazuelo MB, Cleveland JL, Gobert AP, Wilson KT
(2018) Cancer Res 78: 4303-4315
MeSH Terms: Animals, Azoxymethane, Carcinogenesis, Colitis, Ulcerative, Colon, Colonic Neoplasms, Cytokines, Dextran Sulfate, Inflammation, Macrophage Activation, Macrophages, Male, Mice, Ornithine Decarboxylase, Transcription, Genetic, Up-Regulation
Show Abstract · Added June 15, 2018
Ornithine decarboxylase (ODC) is the rate-limiting enzyme for polyamine biosynthesis and restricts M1 macrophage activation in gastrointestinal (GI) infections. However, the role of macrophage ODC in colonic epithelial-driven inflammation is unknown. Here, we investigate cell-specific effects of ODC in colitis and colitis-associated carcinogenesis (CAC). Human colonic macrophages expressed increased ODC levels in active ulcerative colitis and Crohn's disease, colitis-associated dysplasia, and CAC. Mice lacking in myeloid cells ( mice) that were treated with dextran sulfate sodium (DSS) exhibited improved survival, body weight, and colon length and reduced histologic injury versus control mice. In contrast, GI epithelial-specific knockout had no effect on clinical parameters. Despite reduced histologic damage, colitis tissues of mice had increased levels of multiple proinflammatory cytokines and chemokines and enhanced expression of M1, but not M2 markers. In the azoxymethane-DSS model of CAC, mice had reduced tumor number, burden, and high-grade dysplasia. Tumors from mice had increased M1, but not M2 macrophages. Increased levels of histone 3, lysine 9 acetylation, a marker of open chromatin, were manifest in tumor macrophages of mice, consistent with our findings that macrophage ODC affects histone modifications that upregulate M1 gene transcription during GI infections. These findings support the concept that macrophage ODC augments epithelial injury-associated colitis and CAC by impairing the M1 responses that stimulate epithelial repair, antimicrobial defense, and antitumoral immunity. They also suggest that macrophage ODC is an important target for colon cancer chemoprevention. Ornithine decarboxylase contributes to the pathogenesis of colitis and associated carcinogenesis by impairing M1 macrophage responses needed for antitumoral immunity; targeting ODC in macrophages may represent a new strategy for chemoprevention. .
©2018 American Association for Cancer Research.
0 Communities
2 Members
0 Resources
16 MeSH Terms
EGFR-mediated macrophage activation promotes colitis-associated tumorigenesis.
Hardbower DM, Coburn LA, Asim M, Singh K, Sierra JC, Barry DP, Gobert AP, Piazuelo MB, Washington MK, Wilson KT
(2017) Oncogene 36: 3807-3819
MeSH Terms: Animals, Carcinogenesis, Colitis, Colon, Colonic Neoplasms, Dextran Sulfate, ErbB Receptors, Humans, Immunity, Innate, Macrophage Activation, Macrophages, Male, Mice, Inbred C57BL, Mice, Transgenic, Neovascularization, Pathologic, Precancerous Conditions, Signal Transduction
Show Abstract · Added March 12, 2017
Epidermal growth factor receptor (EGFR) signaling is a known mediator of colorectal carcinogenesis. Studies have focused on the role of EGFR signaling in epithelial cells, although the exact nature of the role of EGFR in colorectal carcinogenesis remains a topic of debate. Here, we present evidence that EGFR signaling in myeloid cells, specifically macrophages, is critical for colon tumorigenesis in the azoxymethane-dextran sodium sulfate (AOM-DSS) model of colitis-associated carcinogenesis (CAC). In a human tissue microarray, colonic macrophages demonstrated robust EGFR activation in the pre-cancerous stages of colitis and dysplasia. Utilizing the AOM-DSS model, mice with a myeloid-specific deletion of Egfr had significantly decreased tumor multiplicity and burden, protection from high-grade dysplasia and significantly reduced colitis. Intriguingly, mice with gastrointestinal epithelial cell-specific Egfr deletion demonstrated no differences in tumorigenesis in the AOM-DSS model. The alterations in tumorigenesis in myeloid-specific Egfr knockout mice were accompanied by decreased macrophage, neutrophil and T-cell infiltration. Pro-tumorigenic M2 macrophage activation was diminished in myeloid-specific Egfr-deficient mice, as marked by decreased Arg1 and Il10 mRNA expression and decreased interleukin (IL)-4, IL10 and IL-13 protein levels. Surprisingly, diminished M1 macrophage activation was also detectable, as marked by significantly reduced Nos2 and Il1b mRNA levels and decreased interferon (IFN)-γ, tumor necrosis factor (TNF)-α and IL-1β protein levels. The alterations in M1 and M2 macrophage activation were confirmed in bone marrow-derived macrophages from mice with the myeloid-specific Egfr knockout. The combined effect of restrained M1 and M2 macrophage activation resulted in decreased production of pro-angiogenic factors, CXCL1 and vascular endothelial growth factor (VEGF), and reduced CD31 blood vessels, which likely contributed to protection from tumorigenesis. These data reveal that EGFR signaling in macrophages, but not in colonic epithelial cells, has a significant role in CAC. EGFR signaling in macrophages may prove to be an effective biomarker of CAC or target for chemoprevention in patients with inflammatory bowel disease.
0 Communities
3 Members
0 Resources
17 MeSH Terms
Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications.
Hardbower DM, Asim M, Luis PB, Singh K, Barry DP, Yang C, Steeves MA, Cleveland JL, Schneider C, Piazuelo MB, Gobert AP, Wilson KT
(2017) Proc Natl Acad Sci U S A 114: E751-E760
MeSH Terms: Animals, Cell Line, Citrobacter rodentium, Colitis, Colon, Cytokines, Enterobacteriaceae Infections, Gastric Mucosa, Gastritis, Helicobacter Infections, Helicobacter pylori, Histones, Humans, Macrophage Activation, Macrophages, Male, Mice, NLR Family, Pyrin Domain-Containing 3 Protein, Ornithine Decarboxylase, Putrescine
Show Abstract · Added January 19, 2017
Macrophage activation is a critical step in host responses during bacterial infections. Ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine metabolism, has been well studied in epithelial cells and is known to have essential roles in many different cellular functions. However, its role in regulating macrophage function during bacterial infections is not well characterized. We demonstrate that macrophage-derived ODC is a critical regulator of M1 macrophage activation during both Helicobacter pylori and Citrobacter rodentium infection. Myeloid-specific Odc deletion significantly increased gastric and colonic inflammation, respectively, and enhanced M1 activation. Add-back of putrescine, the product of ODC, reversed the increased macrophage activation, indicating that ODC and putrescine are regulators of macrophage function. Odc-deficient macrophages had increased histone 3, lysine 4 (H3K4) monomethylation, and H3K9 acetylation, accompanied by decreased H3K9 di/trimethylation both in vivo and ex vivo in primary macrophages. These alterations in chromatin structure directly resulted in up-regulated gene transcription, especially M1 gene expression. Thus, ODC in macrophages tempers antimicrobial, M1 macrophage responses during bacterial infections through histone modifications and altered euchromatin formation, leading to the persistence and pathogenesis of these organisms.
0 Communities
1 Members
0 Resources
20 MeSH Terms
PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation.
Iwata H, Goettsch C, Sharma A, Ricchiuto P, Goh WW, Halu A, Yamada I, Yoshida H, Hara T, Wei M, Inoue N, Fukuda D, Mojcher A, Mattson PC, Barabási AL, Boothby M, Aikawa E, Singh SA, Aikawa M
(2016) Nat Commun 7: 12849
MeSH Terms: ADP-Ribosylation, Animals, Apoptosis, Atherosclerosis, Cell Survival, Coronary Artery Disease, Female, Humans, Inflammation, Interferon-gamma, Interleukin-4, Lipopolysaccharide Receptors, Macrophage Activation, Male, Mice, Mice, Inbred C57BL, Neoplasm Proteins, Phosphorylation, Plaque, Atherosclerotic, Poly(ADP-ribose) Polymerases, RAW 264.7 Cells, RNA Interference, Ribose, STAT1 Transcription Factor, THP-1 Cells
Show Abstract · Added March 14, 2018
Despite the global impact of macrophage activation in vascular disease, the underlying mechanisms remain obscure. Here we show, with global proteomic analysis of macrophage cell lines treated with either IFNγ or IL-4, that PARP9 and PARP14 regulate macrophage activation. In primary macrophages, PARP9 and PARP14 have opposing roles in macrophage activation. PARP14 silencing induces pro-inflammatory genes and STAT1 phosphorylation in M(IFNγ) cells, whereas it suppresses anti-inflammatory gene expression and STAT6 phosphorylation in M(IL-4) cells. PARP9 silencing suppresses pro-inflammatory genes and STAT1 phosphorylation in M(IFNγ) cells. PARP14 induces ADP-ribosylation of STAT1, which is suppressed by PARP9. Mutations at these ADP-ribosylation sites lead to increased phosphorylation. Network analysis links PARP9-PARP14 with human coronary artery disease. PARP14 deficiency in haematopoietic cells accelerates the development and inflammatory burden of acute and chronic arterial lesions in mice. These findings suggest that PARP9 and PARP14 cross-regulate macrophage activation.
0 Communities
1 Members
0 Resources
25 MeSH Terms
CC-chemokine receptor 7 (CCR7) deficiency alters adipose tissue leukocyte populations in mice.
Orr JS, Kennedy AJ, Hill AA, Anderson-Baucum EK, Hubler MJ, Hasty AH
(2016) Physiol Rep 4:
MeSH Terms: Adipose Tissue, Animals, CD8-Positive T-Lymphocytes, Diet, High-Fat, Fatty Liver, Interleukins, Macrophage Activation, Macrophages, Mice, Mice, Inbred C57BL, Obesity, Receptors, CCR7, Tumor Necrosis Factor-alpha
Show Abstract · Added April 6, 2017
The mechanism by which macrophages and other immune cells accumulate in adipose tissue (AT) has been an area of intense investigation over the past decade. Several different chemokines and their cognate receptors have been studied for their role as chemoattractants in promoting recruitment of immune cells to AT However, it is also possible that chemoattractants known to promote clearance of immune cells from tissues to regional lymph nodes might be a critical component to overall AT immune homeostasis. In this study, we evaluated whether CCR7 influences AT macrophage (ATM) or T-cell (ATT) accumulation. CCR7 and littermate wild-type (WT) mice were placed on low-fat diet (LFD) or high-fat diet (HFD) for 16 weeks. CCR7 deficiency did not impact HFD-induced weight gain, hepatic steatosis, or glucose intolerance. Although lean CCR7 mice had an increased proportion of alternatively activated ATMs, there were no differences in ATM accumulation or polarization between HFD-fed CCR7 mice and their WT counterparts. However, CCR7 deficiency did lead to the preferential accumulation of CD8 ATT cells, which was further exacerbated by HFD feeding. Finally, expression of inflammatory cytokines/chemokines, such as Tnf, Il6, Il1β, Ccl2, and Ccl3, was equally elevated in AT by HFD feeding in CCR7 and WT mice, while Ifng and Il18 were elevated by HFD feeding in CCR7 but not in WT mice. Together, these data suggest that CCR7 plays a role in CD8ATT cell egress, but does not influence ATM accumulation or the metabolic impact of diet-induced obesity.
© 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
0 Communities
1 Members
0 Resources
13 MeSH Terms
EGFR regulates macrophage activation and function in bacterial infection.
Hardbower DM, Singh K, Asim M, Verriere TG, Olivares-Villagómez D, Barry DP, Allaman MM, Washington MK, Peek RM, Piazuelo MB, Wilson KT
(2016) J Clin Invest 126: 3296-312
MeSH Terms: Animals, Bacterial Infections, Chemokines, Citrobacter rodentium, Cytokines, Disease Progression, ErbB Receptors, Female, Gastric Mucosa, Helicobacter Infections, Helicobacter pylori, Humans, Inflammation, Macrophage Activation, Macrophages, Male, Mice, Mice, Transgenic, NF-kappa B, Phosphorylation, Signal Transduction
Show Abstract · Added August 3, 2016
EGFR signaling regulates macrophage function, but its role in bacterial infection has not been investigated. Here, we assessed the role of macrophage EGFR signaling during infection with Helicobacter pylori, a bacterial pathogen that causes persistent inflammation and gastric cancer. EGFR was phosphorylated in murine and human macrophages during H. pylori infection. In human gastric tissues, elevated levels of phosphorylated EGFR were observed throughout the histologic cascade from gastritis to carcinoma. Deleting Egfr in myeloid cells attenuated gastritis and increased H. pylori burden in infected mice. EGFR deficiency also led to a global defect in macrophage activation that was associated with decreased cytokine, chemokine, and NO production. We observed similar alterations in macrophage activation and disease phenotype in the Citrobacter rodentium model of murine infectious colitis. Mechanistically, EGFR signaling activated NF-κB and MAPK1/3 pathways to induce cytokine production and macrophage activation. Although deletion of Egfr had no effect on DC function, EGFR-deficient macrophages displayed impaired Th1 and Th17 adaptive immune responses to H. pylori, which contributed to decreased chronic inflammation in infected mice. Together, these results indicate that EGFR signaling is central to macrophage function in response to enteric bacterial pathogens and is a potential therapeutic target for infection-induced inflammation and associated carcinogenesis.
0 Communities
2 Members
0 Resources
21 MeSH Terms
TRPM2 ion channels regulate macrophage polarization and gastric inflammation during Helicobacter pylori infection.
Beceiro S, Radin JN, Chatuvedi R, Piazuelo MB, Horvarth DJ, Cortado H, Gu Y, Dixon B, Gu C, Lange I, Koomoa DL, Wilson KT, Algood HM, Partida-Sánchez S
(2017) Mucosal Immunol 10: 493-507
MeSH Terms: Animals, Calcium Signaling, Cell Differentiation, Cells, Cultured, Cytokines, Gastritis, Helicobacter Infections, Helicobacter pylori, Inflammation Mediators, Macrophage Activation, Macrophages, Mice, Mice, Inbred C57BL, Mice, Knockout, NADP, Oxidative Stress, Reactive Oxygen Species, TRPM Cation Channels
Show Abstract · Added July 30, 2016
Calcium signaling in phagocytes is essential for cellular activation, migration, and the potential resolution of infection or inflammation. The generation of reactive oxygen species (ROS) via activation of NADPH (nicotinamide adenine dinucleotide phosphate)-oxidase activity in macrophages has been linked to altered intracellular calcium concentrations. Because of its role as an oxidative stress sensor in phagocytes, we investigated the function of the cation channel transient receptor potential melastatin 2 (TRPM2) in macrophages during oxidative stress responses induced by Helicobacter pylori infection. We show that Trpm2/ mice, when chronically infected with H. pylori, exhibit increased gastric inflammation and decreased bacterial colonization compared with wild-type (WT) mice. The absence of TRPM2 triggers greater macrophage production of inflammatory mediators and promotes classically activated macrophage M1 polarization in response to H. pylori. TRPM2-deficient macrophages upon H. pylori stimulation are unable to control intracellular calcium levels, which results in calcium overloading. Furthermore, increased intracellular calcium in TRPM2/ macrophages enhanced mitogen-activated protein kinase and NADPH-oxidase activities, compared with WT macrophages. Our data suggest that augmented production of ROS and inflammatory cytokines with TRPM2 deletion regulates oxidative stress in macrophages and consequently decreases H. pylori gastric colonization while increasing inflammation in the gastric mucosa.
0 Communities
2 Members
0 Resources
18 MeSH Terms
Adipocyte-specific CD1d-deficiency mitigates diet-induced obesity and insulin resistance in mice.
Satoh M, Hoshino M, Fujita K, Iizuka M, Fujii S, Clingan CS, Van Kaer L, Iwabuchi K
(2016) Sci Rep 6: 28473
MeSH Terms: 3T3-L1 Cells, Adipocytes, Adiponectin, Animals, Antigen Presentation, Antigens, CD1d, B7-1 Antigen, Diet, High-Fat, Disease Models, Animal, Disease Progression, Galactosylceramides, Insulin Resistance, Interferon-gamma, Lymphocyte Activation, Macrophage Activation, Mice, Mice, Inbred C57BL, Mice, Knockout, Mice, Transgenic, Natural Killer T-Cells, Obesity
Show Abstract · Added July 30, 2016
It has been shown that CD1d expression and glycolipid-reactive, CD1d-restricted NKT cells exacerbate the development of obesity and insulin resistance in mice. However, the relevant CD1d-expressing cells that influence the effects of NKT cells on the progression of obesity remain incompletely defined. In this study, we have demonstrated that 3T3-L1 adipocytes can present endogenous ligands to NKT cells, leading to IFN-γ production, which in turn, stimulated 3T3-L1 adipocytes to enhance expression of CD1d and CCL2, and decrease expression of adiponectin. Furthermore, adipocyte-specific CD1d deletion decreased the size of the visceral adipose tissue mass and enhanced insulin sensitivity in mice fed a high-fat diet (HFD). Accordingly, NKT cells were less activated, IFN-γ production was significantly reduced, and levels of adiponectin were increased in these animals as compared with control mice on HFD. Importantly, macrophage recruitment into the adipose tissue of adipocyte-specific CD1d-deficient mice was significantly blunted. These findings indicate that interactions between NKT cells and CD1d-expressing adipocytes producing endogenous NKT cell ligands play a critical role in the induction of inflammation and functional modulation of adipose tissue that leads to obesity.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Arginase 2 deletion leads to enhanced M1 macrophage activation and upregulated polyamine metabolism in response to Helicobacter pylori infection.
Hardbower DM, Asim M, Murray-Stewart T, Casero RA, Verriere T, Lewis ND, Chaturvedi R, Piazuelo MB, Wilson KT
(2016) Amino Acids 48: 2375-88
MeSH Terms: Animals, Arginase, Biogenic Polyamines, Helicobacter Infections, Helicobacter pylori, Immune Evasion, Macrophage Activation, Macrophages, Mice, Mice, Knockout, Nitric Oxide Synthase Type II, Stomach, Th1 Cells, Th17 Cells
Show Abstract · Added April 22, 2016
We reported that arginase 2 (ARG2) deletion results in increased gastritis and decreased bacterial burden during Helicobacter pylori infection in mice. Our studies implicated a potential role for inducible nitric oxide (NO) synthase (NOS2), as Arg2 (-/-) mice exhibited increased NOS2 levels in gastric macrophages, and NO can kill H. pylori. We now bred Arg2 (-/-) to Nos2 (-/-) mice, and infected them with H. pylori. Compared to wild-type mice, both Arg2 (-/-) and Arg2 (-/-) ;Nos2 (-/-) mice exhibited increased gastritis and decreased colonization, the latter indicating that the effect of ARG2 deletion on bacterial burden was not mediated by NO. While Arg2 (-/-) mice demonstrated enhanced M1 macrophage activation, Nos2 (-/-) and Arg2 (-/-) ;Nos2 (-/-) mice did not demonstrate these changes, but exhibited increased CXCL1 and CXCL2 responses. There was an increased expression of the Th1/Th17 cytokines, interferon gamma and interleukin 17, in gastric tissues and splenic T-cells from Arg2 (-/-), but not Nos2 (-/-) or Arg2 (-/-) ;Nos2 (-/-) mice. Gastric tissues from infected Arg2 (-/-) mice demonstrated increased expression of arginase 1, ornithine decarboxylase, adenosylmethionine decarboxylase 1, spermidine/spermine N (1)-acetyltransferase 1, and spermine oxidase, along with increased spermine levels. These data indicate that ARG2 deletion results in compensatory upregulation of gastric polyamine synthesis and catabolism during H. pylori infection, which may contribute to increased gastric inflammation and associated decreased bacterial load. Overall, the finding of this study is that ARG2 contributes to the immune evasion of H. pylori by restricting M1 macrophage activation and polyamine metabolism.
0 Communities
1 Members
0 Resources
14 MeSH Terms
The PGE2 EP3 Receptor Regulates Diet-Induced Adiposity in Male Mice.
Ceddia RP, Lee D, Maulis MF, Carboneau BA, Threadgill DW, Poffenberger G, Milne G, Boyd KL, Powers AC, McGuinness OP, Gannon M, Breyer RM
(2016) Endocrinology 157: 220-32
MeSH Terms: Adipose Tissue, White, Adiposity, Animals, Cell Size, Crosses, Genetic, Diabetes Mellitus, Type 2, Diet, High-Fat, Insulin Resistance, Lipid Metabolism, Liver, Macrophage Activation, Male, Mice, Inbred C57BL, Mice, Knockout, Muscle, Skeletal, Necrosis, Non-alcoholic Fatty Liver Disease, Obesity, Panniculitis, Receptors, Prostaglandin E, EP3 Subtype, Weight Gain
Show Abstract · Added January 12, 2016
Mice carrying a targeted disruption of the prostaglandin E2 (PGE2) E-prostanoid receptor 3 (EP3) gene, Ptger3, were fed a high-fat diet (HFD), or a micronutrient matched control diet, to investigate the effects of disrupted PGE2-EP3 signaling on diabetes in a setting of diet-induced obesity. Although no differences in body weight were seen in mice fed the control diet, when fed a HFD, EP3(-/-) mice gained more weight relative to EP3(+/+) mice. Overall, EP3(-/-) mice had increased epididymal fat mass and adipocyte size; paradoxically, a relative decrease in both epididymal fat pad mass and adipocyte size was observed in the heaviest EP3(-/-) mice. The EP3(-/-) mice had increased macrophage infiltration, TNF-α, monocyte chemoattractant protein-1, IL-6 expression, and necrosis in their epididymal fat pads as compared with EP3(+/+) animals. Adipocytes isolated from EP3(+/+) or EP3(-/-) mice were assayed for the effect of PGE2-evoked inhibition of lipolysis. Adipocytes isolated from EP3(-/-) mice lacked PGE2-evoked inhibition of isoproterenol stimulated lipolysis compared with EP3(+/+). EP3(-/-) mice fed HFD had exaggerated ectopic lipid accumulation in skeletal muscle and liver, with evidence of hepatic steatosis. Both blood glucose and plasma insulin levels were similar between genotypes on a control diet, but when fed HFD, EP3(-/-) mice became hyperglycemic and hyperinsulinemic when compared with EP3(+/+) fed HFD, demonstrating a more severe insulin resistance phenotype in EP3(-/-). These results demonstrate that when fed a HFD, EP3(-/-) mice have abnormal lipid distribution, developing excessive ectopic lipid accumulation and associated insulin resistance.
3 Communities
5 Members
0 Resources
21 MeSH Terms