Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 24

Publication Record

Connections

Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer.
Formisano L, Lu Y, Servetto A, Hanker AB, Jansen VM, Bauer JA, Sudhan DR, Guerrero-Zotano AL, Croessmann S, Guo Y, Ericsson PG, Lee KM, Nixon MJ, Schwarz LJ, Sanders ME, Dugger TC, Cruz MR, Behdad A, Cristofanilli M, Bardia A, O'Shaughnessy J, Nagy RJ, Lanman RB, Solovieff N, He W, Miller M, Su F, Shyr Y, Mayer IA, Balko JM, Arteaga CL
(2019) Nat Commun 10: 1373
MeSH Terms: Aminopyridines, Animals, Antineoplastic Agents, Hormonal, Antineoplastic Combined Chemotherapy Protocols, Breast Neoplasms, Circulating Tumor DNA, Cyclin D1, Cyclin-Dependent Kinase 4, Cyclin-Dependent Kinase 6, Drug Resistance, Neoplasm, Female, Fulvestrant, High-Throughput Nucleotide Sequencing, Humans, MCF-7 Cells, Mice, Mutation, Naphthalenes, Piperazines, Progression-Free Survival, Proportional Hazards Models, Protein Kinase Inhibitors, Purines, Pyrazoles, Pyridines, Quinolines, Quinoxalines, Receptor, Fibroblast Growth Factor, Type 1, Receptor, Fibroblast Growth Factor, Type 2, Receptors, Estrogen, Signal Transduction, Xenograft Model Antitumor Assays
Show Abstract · Added April 2, 2019
Using an ORF kinome screen in MCF-7 cells treated with the CDK4/6 inhibitor ribociclib plus fulvestrant, we identified FGFR1 as a mechanism of drug resistance. FGFR1-amplified/ER+ breast cancer cells and MCF-7 cells transduced with FGFR1 were resistant to fulvestrant ± ribociclib or palbociclib. This resistance was abrogated by treatment with the FGFR tyrosine kinase inhibitor (TKI) lucitanib. Addition of the FGFR TKI erdafitinib to palbociclib/fulvestrant induced complete responses of FGFR1-amplified/ER+ patient-derived-xenografts. Next generation sequencing of circulating tumor DNA (ctDNA) in 34 patients after progression on CDK4/6 inhibitors identified FGFR1/2 amplification or activating mutations in 14/34 (41%) post-progression specimens. Finally, ctDNA from patients enrolled in MONALEESA-2, the registration trial of ribociclib, showed that patients with FGFR1 amplification exhibited a shorter progression-free survival compared to patients with wild type FGFR1. Thus, we propose breast cancers with FGFR pathway alterations should be considered for trials using combinations of ER, CDK4/6 and FGFR antagonists.
0 Communities
1 Members
0 Resources
32 MeSH Terms
ERα-Mediated Nuclear Sequestration of RSK2 Is Required for ER Breast Cancer Tumorigenesis.
Ludwik KA, McDonald OG, Brenin DR, Lannigan DA
(2018) Cancer Res 78: 2014-2025
MeSH Terms: Animals, Breast Neoplasms, Carcinogenesis, Cell Nucleus, Estrogen Receptor alpha, Female, Humans, MCF-7 Cells, Mice, Mice, Inbred C57BL, Neoplasm Invasiveness, Ribosomal Protein S6 Kinases, 90-kDa
Show Abstract · Added July 20, 2018
Although ribosomal protein S6 kinase A3 (RSK2) activation status positively correlates with patient responses to antiestrogen hormonal therapies, the mechanistic basis for these observations is unknown. Using multiple and models of estrogen receptor-positive (ER) breast cancer, we report that ERα sequesters active RSK2 into the nucleus to promote neoplastic transformation and facilitate metastatic tumor growth. RSK2 physically interacted with ERα through its N terminus to activate a proneoplastic transcriptional network critical to the ER lineage in the mammary gland, thereby providing a gene signature that effectively stratified patient tumors according to ERα status. ER tumor growth was strongly dependent on nuclear RSK2, and transgenic mice engineered to stably express nuclear RSK2 in the mammary gland developed high-grade ductal carcinoma Mammary cells isolated from the transgenic model and introduced systemically successfully disseminated and established metastatic lesions. Antiestrogens disrupted the interaction between RSK2 and ERα, driving RSK2 into the cytoplasm and impairing tumor formation. These findings establish RSK2 as an obligate participant of ERα-mediated transcriptional programs, tumorigenesis, and divergent patient responses to antiestrogen therapies. Nuclear accumulation of active RSK drives a protumorigenic transcriptional program and renders ER breast cancer susceptible to endocrine-based therapies. .
©2018 American Association for Cancer Research.
0 Communities
2 Members
0 Resources
12 MeSH Terms
Key Survival Factor, Mcl-1, Correlates with Sensitivity to Combined Bcl-2/Bcl-xL Blockade.
Williams MM, Lee L, Hicks DJ, Joly MM, Elion D, Rahman B, McKernan C, Sanchez V, Balko JM, Stricker T, Estrada MV, Cook RS
(2017) Mol Cancer Res 15: 259-268
MeSH Terms: Aniline Compounds, Antineoplastic Agents, Breast Neoplasms, Cell Line, Tumor, Cell Survival, Estrogen Receptor alpha, Female, Humans, MCF-7 Cells, Myeloid Cell Leukemia Sequence 1 Protein, Neoplasms, Proto-Oncogene Proteins c-bcl-2, RNA, Messenger, Sulfonamides, bcl-X Protein
Show Abstract · Added April 6, 2017
An estimated 40,000 deaths will be attributed to breast cancer in 2016, underscoring the need for improved therapies. Evading cell death is a major hallmark of cancer, driving tumor progression and therapeutic resistance. To evade apoptosis, cancers use antiapoptotic Bcl-2 proteins to bind to and neutralize apoptotic activators, such as Bim. Investigation of antiapoptotic Bcl-2 family members in clinical breast cancer datasets revealed greater expression and more frequent gene amplification of as compared with or (Bcl-xL) across three major molecular breast cancer subtypes, Luminal (A and B), HER2-enriched, and Basal-like. While Mcl-1 protein expression was elevated in estrogen receptor α (ERα)-positive and ERα-negative tumors as compared with normal breast, Mcl-1 staining was higher in ERα tumors. Targeted Mcl-1 blockade using RNAi increased caspase-mediated cell death in ERα breast cancer cells, resulting in sustained growth inhibition. In contrast, combined blockade of Bcl-2 and Bcl-xL only transiently induced apoptosis, as cells rapidly acclimated through Mcl-1 upregulation and enhanced Mcl-1 activity, as measured using Mcl-1/Bim proximity ligation assays. Importantly, gene expression levels correlated inversely with sensitivity to pharmacologic Bcl-2/Bcl-xL inhibition in luminal breast cancer cells, whereas no relationship was seen between the gene expression of or and sensitivity to Bcl-2/Bcl-xL inhibition. These results demonstrate that breast cancers rapidly deploy Mcl-1 to promote cell survival, particularly when challenged with blockade of other Bcl-2 family members, warranting the continued development of Mcl-1-selective inhibitors for targeted tumor cell killing. Mcl-1 levels predict breast cancer response to inhibitors targeting other Bcl-2 family members, and demonstrate the key role played by Mcl-1 in resistance to this drug class. .
©2016 American Association for Cancer Research.
0 Communities
2 Members
0 Resources
15 MeSH Terms
Long intergenic non-coding RNA expression signature in human breast cancer.
Zhang Y, Wagner EK, Guo X, May I, Cai Q, Zheng W, He C, Long J
(2016) Sci Rep 6: 37821
MeSH Terms: Adult, Aged, Breast Neoplasms, Case-Control Studies, Female, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Humans, MCF-7 Cells, Middle Aged, Protein Interaction Maps, RNA, Long Noncoding, Sequence Analysis, RNA, Survival Analysis, Transcription Factors
Show Abstract · Added April 3, 2018
Breast cancer is a complex disease, characterized by gene deregulation. There is less systematic investigation of the capacity of long intergenic non-coding RNAs (lincRNAs) as biomarkers associated with breast cancer pathogenesis or several clinicopathological variables including receptor status and patient survival. We designed a two-stage study, including 1,000 breast tumor RNA-seq data from The Cancer Genome Atlas (TCGA) as the discovery stage, and RNA-seq data of matched tumor and adjacent normal tissue from 50 breast cancer patients as well as 23 normal breast tissue from healthy women as the replication stage. We identified 83 lincRNAs showing the significant expression changes in breast tumors with a false discovery rate (FDR) < 1% in the discovery dataset. Thirty-seven out of the 83 were validated in the replication dataset. Integrative genomic analyses suggested that the aberrant expression of these 37 lincRNAs was probably related with the expression alteration of several transcription factors (TFs). We observed a differential co-expression pattern between lincRNAs and their neighboring genes. We found that the expression levels of one lincRNA (RP5-1198O20 with Ensembl ID ENSG00000230615) were associated with breast cancer survival with P < 0.05. Our study identifies a set of aberrantly expressed lincRNAs in breast cancer.
0 Communities
2 Members
0 Resources
15 MeSH Terms
Decreased LRIG1 in fulvestrant-treated luminal breast cancer cells permits ErbB3 upregulation and increased growth.
Morrison MM, Williams MM, Vaught DB, Hicks D, Lim J, McKernan C, Aurisicchio L, Ciliberto G, Simion C, Sweeney C, Cook RS
(2016) Oncogene 35: 1143-52
MeSH Terms: Animals, Breast Neoplasms, Cell Proliferation, Disease-Free Survival, Drug Resistance, Neoplasm, Estradiol, Estrogen Receptor alpha, Estrogens, Female, Fulvestrant, Gene Expression Regulation, Neoplastic, Humans, MCF-7 Cells, Membrane Glycoproteins, Mice, Receptor, ErbB-3, Xenograft Model Antitumor Assays
Show Abstract · Added April 15, 2019
ErbB3, a member of the ErbB family of receptor tyrosine kinases, is a potent activator of phosphatidyl inositol-3 kinase (PI3K) and mammalian target of rapamycin (mTOR) signaling, driving tumor cell survival and therapeutic resistance in breast cancers. In luminal breast cancers, ErbB3 upregulation following treatment with the antiestrogen fulvestrant enhances PI3K/mTOR-mediated cell survival. However, the mechanism by which ErbB3 is upregulated in fulvestrant-treated cells is unknown. We found that ErbB3 protein levels and cell surface presentation were increased following fulvestrant treatment, focusing our attention on proteins that regulate ErbB3 at the cell surface, including Nrdp1, NEDD4 and LRIG1. Among these, only LRIG1 correlated positively with ERα, but inversely with ErbB3 in clinical breast cancer data sets. LRIG1, an estrogen-inducible ErbB downregulator, was decreased in a panel of fulvestrant-treated luminal breast cancer cells. Ectopic LRIG1 expression from an estrogen-independent promoter uncoupled LRIG1 from estrogen regulation, thus sustaining LRIG1 and maintaining low ErbB3 levels in fulvestrant-treated cells. An LRIG1 mutant lacking the ErbB3 interaction motif was insufficient to downregulate ErbB3. Importantly, LRIG1 overexpression improved fulvestrant-mediated growth inhibition, whereas cells expressing the LRIG1 mutant were poorly sensitive to fulvestrant, despite effective ERα downregulation. Consistent with these results, LRIG1 expression correlated positively with increased disease-free survival in antiestrogen-treated breast cancer patients. These data suggest that ERα-dependent expression of LRIG1 dampens ErbB3 signaling in luminal breast cancer cells, and by blocking ERα activity with fulvestrant, LRIG1 is decreased thus permitting ErbB3 accumulation, enhanced ErbB3 signaling to cell survival pathways and blunting therapeutic response to fulvestrant.
0 Communities
1 Members
0 Resources
MeSH Terms
Fine-scale mapping of the 5q11.2 breast cancer locus reveals at least three independent risk variants regulating MAP3K1.
Glubb DM, Maranian MJ, Michailidou K, Pooley KA, Meyer KB, Kar S, Carlebur S, O'Reilly M, Betts JA, Hillman KM, Kaufmann S, Beesley J, Canisius S, Hopper JL, Southey MC, Tsimiklis H, Apicella C, Schmidt MK, Broeks A, Hogervorst FB, van der Schoot CE, Muir K, Lophatananon A, Stewart-Brown S, Siriwanarangsan P, Fasching PA, Ruebner M, Ekici AB, Beckmann MW, Peto J, dos-Santos-Silva I, Fletcher O, Johnson N, Pharoah PD, Bolla MK, Wang Q, Dennis J, Sawyer EJ, Tomlinson I, Kerin MJ, Miller N, Burwinkel B, Marme F, Yang R, Surowy H, Guénel P, Truong T, Menegaux F, Sanchez M, Bojesen SE, Nordestgaard BG, Nielsen SF, Flyger H, González-Neira A, Benitez J, Zamora MP, Arias Perez JI, Anton-Culver H, Neuhausen SL, Brenner H, Dieffenbach AK, Arndt V, Stegmaier C, Meindl A, Schmutzler RK, Brauch H, Ko YD, Brüning T, GENICA Network, Nevanlinna H, Muranen TA, Aittomäki K, Blomqvist C, Matsuo K, Ito H, Iwata H, Tanaka H, Dörk T, Bogdanova NV, Helbig S, Lindblom A, Margolin S, Mannermaa A, Kataja V, Kosma VM, Hartikainen JM, kConFab Investigators, Wu AH, Tseng CC, Van Den Berg D, Stram DO, Lambrechts D, Zhao H, Weltens C, van Limbergen E, Chang-Claude J, Flesch-Janys D, Rudolph A, Seibold P, Radice P, Peterlongo P, Barile M, Capra F, Couch FJ, Olson JE, Hallberg E, Vachon C, Giles GG, Milne RL, McLean C, Haiman CA, Henderson BE, Schumacher F, Le Marchand L, Simard J, Goldberg MS, Labrèche F, Dumont M, Teo SH, Yip CH, See MH, Cornes B, Cheng CY, Ikram MK, Kristensen V, Norwegian Breast Cancer Study, Zheng W, Halverson SL, Shrubsole M, Long J, Winqvist R, Pylkäs K, Jukkola-Vuorinen A, Kauppila S, Andrulis IL, Knight JA, Glendon G, Tchatchou S, Devilee P, Tollenaar RA, Seynaeve C, Van Asperen CJ, García-Closas M, Figueroa J, Chanock SJ, Lissowska J, Czene K, Klevebring D, Darabi H, Eriksson M, Hooning MJ, Hollestelle A, Martens JW, Collée JM, Hall P, Li J, Humphreys K, Shu XO, Lu W, Gao YT, Cai H, Cox A, Cross SS, Reed MW, Blot W, Signorello LB, Cai Q, Shah M, Ghoussaini M, Kang D, Choi JY, Park SK, Noh DY, Hartman M, Miao H, Lim WY, Tang A, Hamann U, Torres D, Jakubowska A, Lubinski J, Jaworska K, Durda K, Sangrajrang S, Gaborieau V, Brennan P, McKay J, Olswold C, Slager S, Toland AE, Yannoukakos D, Shen CY, Wu PE, Yu JC, Hou MF, Swerdlow A, Ashworth A, Orr N, Jones M, Pita G, Alonso MR, Álvarez N, Herrero D, Tessier DC, Vincent D, Bacot F, Luccarini C, Baynes C, Ahmed S, Healey CS, Brown MA, Ponder BA, Chenevix-Trench G, Thompson DJ, Edwards SL, Easton DF, Dunning AM, French JD
(2015) Am J Hum Genet 96: 5-20
MeSH Terms: Alleles, Breast Neoplasms, Case-Control Studies, Cell Line, Tumor, Chromosome Mapping, Chromosomes, Human, Pair 5, Continental Population Groups, Female, Genetic Predisposition to Disease, Genome-Wide Association Study, Genotyping Techniques, Humans, MAP Kinase Kinase Kinase 1, MCF-7 Cells, Polymorphism, Single Nucleotide, Promoter Regions, Genetic, Quantitative Trait Loci, Risk Factors
Show Abstract · Added January 20, 2015
Genome-wide association studies (GWASs) have revealed SNP rs889312 on 5q11.2 to be associated with breast cancer risk in women of European ancestry. In an attempt to identify the biologically relevant variants, we analyzed 909 genetic variants across 5q11.2 in 103,991 breast cancer individuals and control individuals from 52 studies in the Breast Cancer Association Consortium. Multiple logistic regression analyses identified three independent risk signals: the strongest associations were with 15 correlated variants (iCHAV1), where the minor allele of the best candidate, rs62355902, associated with significantly increased risks of both estrogen-receptor-positive (ER(+): odds ratio [OR] = 1.24, 95% confidence interval [CI] = 1.21-1.27, ptrend = 5.7 × 10(-44)) and estrogen-receptor-negative (ER(-): OR = 1.10, 95% CI = 1.05-1.15, ptrend = 3.0 × 10(-4)) tumors. After adjustment for rs62355902, we found evidence of association of a further 173 variants (iCHAV2) containing three subsets with a range of effects (the strongest was rs113317823 [pcond = 1.61 × 10(-5)]) and five variants composing iCHAV3 (lead rs11949391; ER(+): OR = 0.90, 95% CI = 0.87-0.93, pcond = 1.4 × 10(-4)). Twenty-six percent of the prioritized candidate variants coincided with four putative regulatory elements that interact with the MAP3K1 promoter through chromatin looping and affect MAP3K1 promoter activity. Functional analysis indicated that the cancer risk alleles of four candidates (rs74345699 and rs62355900 [iCHAV1], rs16886397 [iCHAV2a], and rs17432750 [iCHAV3]) increased MAP3K1 transcriptional activity. Chromatin immunoprecipitation analysis revealed diminished GATA3 binding to the minor (cancer-protective) allele of rs17432750, indicating a mechanism for its action. We propose that the cancer risk alleles act to increase MAP3K1 expression in vivo and might promote breast cancer cell survival.
Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
0 Communities
2 Members
0 Resources
18 MeSH Terms
Kinome-wide functional screen identifies role of PLK1 in hormone-independent, ER-positive breast cancer.
Bhola NE, Jansen VM, Bafna S, Giltnane JM, Balko JM, Estrada MV, Meszoely I, Mayer I, Abramson V, Ye F, Sanders M, Dugger TC, Allen EV, Arteaga CL
(2015) Cancer Res 75: 405-14
MeSH Terms: Animals, Antineoplastic Combined Chemotherapy Protocols, Breast Neoplasms, Cell Cycle Proteins, Drug Synergism, Estradiol, Estrogen Receptor alpha, Female, Fulvestrant, Humans, MCF-7 Cells, Mice, Mice, Nude, Neoplasms, Hormone-Dependent, Protein-Serine-Threonine Kinases, Proto-Oncogene Proteins, Pteridines, RNA, Small Interfering, Random Allocation, Transcription Factors, Transcription, Genetic, Xenograft Model Antitumor Assays, bcl-X Protein
Show Abstract · Added January 20, 2015
Estrogen receptor (ER) α-positive breast cancers initially respond to antiestrogens but eventually become estrogen independent and recur. ER(+) breast cancer cells resistant to long-term estrogen deprivation (LTED) exhibit hormone-independent ER transcriptional activity and growth. A kinome-wide siRNA screen using a library targeting 720 kinases identified Polo-like kinase 1 (PLK1) as one of the top genes whose downregulation resulted in inhibition of estrogen-independent ER transcriptional activity and growth of LTED cells. High PLK1 mRNA and protein correlated with a high Ki-67 score in primary ER(+) breast cancers after treatment with the aromatase inhibitor letrozole. RNAi-mediated knockdown of PLK1 inhibited ER expression, estrogen-independent growth, and ER transcription in MCF7 and HCC1428 LTED cells. Pharmacologic inhibition of PLK1 with volasertib, a small-molecule ATP-competitive PLK1 inhibitor, decreased LTED cell growth, ER transcriptional activity, and ER expression. Volasertib in combination with the ER antagonist, fulvestrant, decreased MCF7 xenograft growth in ovariectomized mice more potently than each drug alone. JUNB, a component of the AP-1 complex, was expressed 16-fold higher in MCF7/LTED compared with parental MCF7 cells. Furthermore, JUNB and BCL2L1 (which encodes antiapoptotic BCL-xL) mRNA levels were markedly reduced upon volasertib treatment in MCF7/LTED cells, while they were increased in parental MCF7 cells. Finally, JUNB knockdown decreased ER expression and transcriptional activity in MCF7/LTED cells, suggesting that PLK1 drives ER expression and estrogen-independent growth via JUNB. These data support a critical role of PLK1 in acquired hormone-independent growth of ER(+) human breast cancer and is therefore a promising target in tumors that have escaped estrogen deprivation therapy.
©2014 American Association for Cancer Research.
0 Communities
2 Members
0 Resources
23 MeSH Terms
Dual MMP7-proximity-activated and folate receptor-targeted nanoparticles for siRNA delivery.
Li H, Miteva M, Kirkbride KC, Cheng MJ, Nelson CE, Simpson EM, Gupta MK, Duvall CL, Giorgio TD
(2015) Biomacromolecules 16: 192-201
MeSH Terms: Drug Delivery Systems, Folate Receptors, GPI-Anchored, Gene Transfer Techniques, Humans, MCF-7 Cells, Matrix Metalloproteinase 7, Nanoparticles, RNA, Small Interfering
Show Abstract · Added March 14, 2018
A dual-targeted siRNA nanocarrier has been synthesized and validated that is selectively activated in environments where there is colocalization of two breast cancer hallmarks, elevated matrix metalloproteinase (MMP) activity and folate receptor overexpression. This siRNA nanocarrier is self-assembled from two polymers containing the same pH-responsive, endosomolytic core-forming block but varying hydrophilic, corona-forming blocks. The corona block of one polymer consists of a 2 kDa PEG attached to a terminal folic acid (FA); the second polymer contains a larger (Y-shaped, 20 kDa) PEG attached to the core block by a proximity-activated targeting (PAT), MMP7-cleavable peptide. In mixed micelle smart polymer nanoparticles (SPNs) formed from the FA- and PAT-based polymers, the proteolytically removable PEG on the PAT polymers shields nonspecific SPN interactions with cells or proteins. When the PAT element is cleaved within an MMP-rich environment, the PEG shielding is removed, exposing the underlying FA and making it accessible for folate receptor-mediated SPN uptake. Characterization of mixed micelles prepared from these two polymers revealed that uptake and siRNA knockdown bioactivity of a 50% FA/50% PAT formulation was dependent on both proteolytic activation and FA receptor engagement. MMP activation and delivery of this formulation to breast cancer cells expressing the FA receptor achieved greater than 50% protein-level knockdown of a model gene with undetectable cytotoxicity. This modular nanoparticle design represents a new paradigm in cell-selective siRNA delivery and allows for stoichiometric tuning of dual-targeting components to achieve superior targeting specificity.
0 Communities
1 Members
0 Resources
8 MeSH Terms
P-REX1 creates a positive feedback loop to activate growth factor receptor, PI3K/AKT and MEK/ERK signaling in breast cancer.
Dillon LM, Bean JR, Yang W, Shee K, Symonds LK, Balko JM, McDonald WH, Liu S, Gonzalez-Angulo AM, Mills GB, Arteaga CL, Miller TW
(2015) Oncogene 34: 3968-76
MeSH Terms: Animals, Breast Neoplasms, Cell Survival, Feedback, Physiological, Female, Guanine Nucleotide Exchange Factors, Humans, MAP Kinase Signaling System, MCF-7 Cells, Mice, Inbred NOD, Mice, SCID, Mutation, Neoplasm Transplantation, Phosphatidylinositol 3-Kinases, Proto-Oncogene Proteins c-akt, Receptors, Growth Factor, rac GTP-Binding Proteins
Show Abstract · Added October 21, 2014
Phosphatidylinositol 3-kinase (PI3K) promotes cancer cell survival, migration, growth and proliferation by generating phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the inner leaflet of the plasma membrane. PIP3 recruits pleckstrin homology domain-containing proteins to the membrane to activate oncogenic signaling cascades. Anticancer therapeutics targeting the PI3K/AKT/mTOR (mammalian target of rapamycin) pathway are in clinical development. In a mass spectrometric screen to identify PIP3-regulated proteins in breast cancer cells, levels of the Rac activator PIP3-dependent Rac exchange factor-1 (P-REX1) increased in response to PI3K inhibition, and decreased upon loss of the PI3K antagonist phosphatase and tensin homolog (PTEN). P-REX1 mRNA and protein levels were positively correlated with ER expression, and inversely correlated with PI3K pathway activation in breast tumors as assessed by gene expression and phosphoproteomic analyses. P-REX1 increased activation of Rac1, PI3K/AKT and MEK/ERK signaling in a PTEN-independent manner, and promoted cell and tumor viability. Loss of P-REX1 or inhibition of Rac suppressed PI3K/AKT and MEK/ERK, and decreased viability. P-REX1 also promoted insulin-like growth factor-1 receptor activation, suggesting that P-REX1 provides positive feedback to activators upstream of PI3K. In support of a model where PIP3-driven P-REX1 promotes both PI3K/AKT and MEK/ERK signaling, high levels of P-REX1 mRNA (but not phospho-AKT or a transcriptomic signature of PI3K activation) were predictive of sensitivity to PI3K inhibitors among breast cancer cell lines. P-REX1 expression was highest in estrogen receptor-positive breast tumors compared with many other cancer subtypes, suggesting that neutralizing the P-REX1/Rac axis may provide a novel therapeutic approach to selectively abrogate oncogenic signaling in breast cancer cells.
0 Communities
2 Members
0 Resources
17 MeSH Terms
Efferocytosis produces a prometastatic landscape during postpartum mammary gland involution.
Stanford JC, Young C, Hicks D, Owens P, Williams A, Vaught DB, Morrison MM, Lim J, Williams M, Brantley-Sieders DM, Balko JM, Tonetti D, Earp HS, Cook RS
(2014) J Clin Invest 124: 4737-52
MeSH Terms: Animals, Apoptosis, Coculture Techniques, Cytokines, Female, Gene Expression, Gene Expression Regulation, Neoplastic, Humans, Lung Neoplasms, MCF-7 Cells, Male, Mammary Glands, Animal, Mammary Neoplasms, Experimental, Mice, Transgenic, Neoplasm Transplantation, Phagocytosis, Postpartum Period, Proto-Oncogene Proteins, Receptor Protein-Tyrosine Kinases, Signal Transduction, Tumor Burden, Up-Regulation, c-Mer Tyrosine Kinase
Show Abstract · Added February 12, 2015
Breast cancers that occur in women 2-5 years postpartum are more frequently diagnosed at metastatic stages and correlate with poorer outcomes compared with breast cancers diagnosed in young, premenopausal women. The molecular mechanisms underlying the malignant severity associated with postpartum breast cancers (ppBCs) are unclear but relate to stromal wound-healing events during postpartum involution, a dynamic process characterized by widespread cell death in milk-producing mammary epithelial cells (MECs). Using both spontaneous and allografted mammary tumors in fully immune-competent mice, we discovered that postpartum involution increases mammary tumor metastasis. Cell death was widespread, not only occurring in MECs but also in tumor epithelium. Dying tumor cells were cleared through receptor tyrosine kinase MerTK-dependent efferocytosis, which robustly induced the transcription of genes encoding wound-healing cytokines, including IL-4, IL-10, IL-13, and TGF-β. Animals lacking MerTK and animals treated with a MerTK inhibitor exhibited impaired efferocytosis in postpartum tumors, a reduction of M2-like macrophages but no change in total macrophage levels, decreased TGF-β expression, and a reduction of postpartum tumor metastasis that was similar to the metastasis frequencies observed in nulliparous mice. Moreover, TGF-β blockade reduced postpartum tumor metastasis. These data suggest that widespread cell death during postpartum involution triggers efferocytosis-induced wound-healing cytokines in the tumor microenvironment that promote metastatic tumor progression.
1 Communities
2 Members
0 Resources
23 MeSH Terms