Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 140

Publication Record


Haploinsufficiency for Microtubule Methylation Is an Early Driver of Genomic Instability in Renal Cell Carcinoma.
Chiang YC, Park IY, Terzo EA, Tripathi DN, Mason FM, Fahey CC, Karki M, Shuster CB, Sohn BH, Chowdhury P, Powell RT, Ohi R, Tsai YS, de Cubas AA, Khan A, Davis IJ, Strahl BD, Parker JS, Dere R, Walker CL, Rathmell WK
(2018) Cancer Res 78: 3135-3146
MeSH Terms: Animals, Carcinogenesis, Carcinoma, Renal Cell, Cell Line, Tumor, Chromosomes, Human, Pair 3, Fibroblasts, Gene Knockdown Techniques, Genomic Instability, Haploinsufficiency, Histone-Lysine N-Methyltransferase, Histones, Humans, Kidney Neoplasms, Kidney Tubules, Proximal, Lysine, Methylation, Mice, Micronuclei, Chromosome-Defective, Microtubules
Show Abstract · Added October 30, 2019
Loss of the short arm of chromosome 3 (3p) occurs early in >95% of clear cell renal cell carcinoma (ccRCC). Nearly ubiquitous 3p loss in ccRCC suggests haploinsufficiency for 3p tumor suppressors as early drivers of tumorigenesis. We previously reported methyltransferase , which trimethylates H3 histones on lysine 36 (H3K36me3) and is located in the 3p deletion, to also trimethylate microtubules on lysine 40 (αTubK40me3) during mitosis, with αTubK40me3 required for genomic stability. We now show that monoallelic, -deficient cells retaining H3K36me3, but not αTubK40me3, exhibit a dramatic increase in mitotic defects and micronuclei count, with increased viability compared with biallelic loss. In -inactivated human kidney cells, rescue with a pathogenic mutant deficient for microtubule (αTubK40me3), but not histone (H3K36me3) methylation, replicated this phenotype. Genomic instability (micronuclei) was also a hallmark of patient-derived cells from ccRCC. These data show that the tumor suppressor displays a haploinsufficiency phenotype disproportionately impacting microtubule methylation and serves as an early driver of genomic instability. Loss of a single allele of a chromatin modifier plays a role in promoting oncogenesis, underscoring the growing relevance of tumor suppressor haploinsufficiency in tumorigenesis. .
©2018 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
MeSH Terms
Assessing glycation-mediated changes in human cortical bone with Raman spectroscopy.
Unal M, Uppuganti S, Leverant CJ, Creecy A, Granke M, Voziyan P, Nyman JS
(2018) J Biophotonics 11: e201700352
MeSH Terms: Amides, Arginine, Cortical Bone, Female, Glycation End Products, Advanced, Glycosylation, Humans, Kinetics, Lysine, Male, Middle Aged, Spectrum Analysis, Raman
Show Abstract · Added March 27, 2018
Establishing a non-destructive method for spatially assessing advanced glycation end-products (AGEs) is a potentially useful step toward investigating the mechanistic role of AGEs in bone quality. To test the hypothesis that the shape of the amide I in the Raman spectroscopy (RS) analysis of bone matrix changes upon AGE accumulation, we incubated paired cadaveric cortical bone in ribose or glucose solutions and in control solutions for 4 and 16 weeks, respectively, at 37°C. Acquiring 10 spectra per bone with a 20X objective and a 830 nm laser, RS was sensitive to AGE accumulation (confirmed by biochemical measurements of pentosidine and fluorescent AGEs). Hyp/Pro ratio increased upon glycation using either 0.1 M ribose, 0.5 M ribose or 0.5 M glucose. Glycation also decreased the amide I sub-peak ratios (cm ) 1668/1638 and 1668/1610 when directly calculated using either second derivative spectrum or local maxima of difference spectrum, though the processing method (eg, averaged spectrum vs individual spectra) to minimize noise influenced detection of differences for the ribose-incubated bones. Glycation however did not affect these sub-peak ratios including the matrix maturity ratio (1668/1690) when calculated using indirect sub-band fitting. The amide I sub-peak ratios likely reflected changes in the collagen I structure.
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
1 Communities
1 Members
0 Resources
12 MeSH Terms
Low bone toughness in the TallyHO model of juvenile type 2 diabetes does not worsen with age.
Creecy A, Uppuganti S, Unal M, Clay Bunn R, Voziyan P, Nyman JS
(2018) Bone 110: 204-214
MeSH Terms: Aging, Animals, Arginine, Bone Density, Chromatography, High Pressure Liquid, Diabetes Mellitus, Type 2, Femur, Fractures, Bone, Lysine, Male, Mice, Spectrum Analysis, Raman, X-Ray Microtomography
Show Abstract · Added February 19, 2018
Fracture risk increases as type 2 diabetes (T2D) progresses. With the rising incidence of T2D, in particular early-onset T2D, a representative pre-clinical model is needed to study mechanisms for treating or preventing diabetic bone disease. Towards that goal, we hypothesized that fracture resistance of bone from diabetic TallyHO mice decreases as the duration of diabetes increases. Femurs and lumbar vertebrae were harvested from male, TallyHO mice and male, non-diabetic SWR/J mice at 16weeks (n≥12 per strain) and 34weeks (n≥13 per strain) of age. As is characteristic of this model of juvenile T2D, the TallyHO mice were obese and hyperglycemic at an early age (5weeks and 10weeks of age, respectively). The femur mid-shaft of TallyHO mice had higher tissue mineral density and larger cortical area, as determined by micro-computed tomography, compared to the femur mid-shaft of SWR/J mice, irrespective of age. As such, the diabetic rodent bone was structurally stronger than the non-diabetic rodent bone, but the higher peak force endured by the diaphysis during three-point (3pt) bending was not independent of the difference in body weight. Upon accounting for the structure of the femur diaphysis, the estimated toughness at 16weeks and 34weeks was lower for the diabetic mice than for non-diabetic controls, but neither toughness nor estimated material strength and resistance to crack growth (3pt bending of contralateral notched femur) decreased as the duration of hyperglycemia increased. With respect to trabecular bone, there were no differences in the compressive strength of the L6 vertebral strength between diabetic and non-diabetic mice at both ages despite a lower trabecular bone volume for the TallyHO than for the SWR/J mice at 34weeks. Amide I sub-peak ratios as determined by Raman Spectroscopy analysis of the femur diaphysis suggested a difference in collagen structure between diabetic and non-diabetic mice, although there was not a significant difference in matrix pentosidine between the groups. Overall, the fracture resistance of bone in the TallyHO model of T2D did not progressively decrease with increasing duration of hyperglycemia. However, given the variability in hyperglycemia in this model, there were correlations between blood glucose levels and certain structural properties including peak force.
Copyright © 2018 Elsevier Inc. All rights reserved.
1 Communities
1 Members
0 Resources
13 MeSH Terms
DehydroalanylGly, a new post translational modification resulting from the breakdown of glutathione.
Friedrich MG, Wang Z, Schey KL, Truscott RJW
(2018) Biochim Biophys Acta Gen Subj 1862: 907-913
MeSH Terms: Alanine, Amino Acid Sequence, Crystallins, Dipeptides, Glutathione, Glutathione Disulfide, Humans, Lens, Crystalline, Lysine, Middle Aged, Molecular Structure, Peptides, Protein Conformation, Protein Processing, Post-Translational, Proteins, Tandem Mass Spectrometry, Young Adult
Show Abstract · Added April 3, 2018
BACKGROUND - The human body contains numerous long-lived proteins which deteriorate with age, typically by racemisation, deamidation, crosslinking and truncation. Previously we elucidated one reaction responsible for age-related crosslinking, the spontaneous formation of dehydroalanine (DHA) intermediates from phosphoserine and cysteine. This resulted in non-disulphide covalent crosslinks. The current paper outlines a novel posttranslational modification (PTM) in human proteins, which involves the addition of dehydroalanylglycine (DHAGly) to Lys residues.
METHODS - Human lens digests were examined by mass spectrometry for the presence of (DHA)Gly (+144.0535 Da) adducts to Lys residues. Peptide model studies were undertaken to elucidate the mechanism of formation.
RESULTS - In the lens, this PTM was detected at 18 lysine sites in 7 proteins. Using model peptides, a pathway for its formation was found to involve initial formation of the glutathione degradation product, γ-Glu(DHA)Gly from oxidised glutathione (GSSG). Once the Lys adduct formed, the Glu residue was lost in a hydrolytic mechanism apparently catalysed by the ε-amino group of the Lys.
CONCLUSIONS - This discovery suggests that within cells, the functional groups of amino acids in proteins may be susceptible to modification by reactive metabolites derived from GSSG.
GENERAL SIGNIFICANCE - Our finding demonstrates a novel +144.0535 Da PTM arising from the breakdown of oxidised glutathione.
Copyright © 2018. Published by Elsevier B.V.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Set2 methyltransferase facilitates cell cycle progression by maintaining transcriptional fidelity.
Dronamraju R, Jha DK, Eser U, Adams AT, Dominguez D, Choudhury R, Chiang YC, Rathmell WK, Emanuele MJ, Churchman LS, Strahl BD
(2018) Nucleic Acids Res 46: 1331-1344
MeSH Terms: Anaphase-Promoting Complex-Cyclosome, Biological Evolution, Cdc20 Proteins, Cell Cycle, Gene Expression Regulation, Fungal, Histone-Lysine N-Methyltransferase, Histones, Humans, Lysine, Methylation, Methyltransferases, Nocodazole, Protein Processing, Post-Translational, Proteolysis, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Transcription, Genetic, Tubulin Modulators
Show Abstract · Added October 30, 2019
Methylation of histone H3 lysine 36 (H3K36me) by yeast Set2 is critical for the maintenance of chromatin structure and transcriptional fidelity. However, we do not know the full range of Set2/H3K36me functions or the scope of mechanisms that regulate Set2-dependent H3K36 methylation. Here, we show that the APC/CCDC20 complex regulates Set2 protein abundance during the cell cycle. Significantly, absence of Set2-mediated H3K36me causes a loss of cell cycle control and pronounced defects in the transcriptional fidelity of cell cycle regulatory genes, a class of genes that are generally long, hence highly dependent on Set2/H3K36me for their transcriptional fidelity. Because APC/C also controls human SETD2, and SETD2 likewise regulates cell cycle progression, our data imply an evolutionarily conserved cell cycle function for Set2/SETD2 that may explain why recurrent mutations of SETD2 contribute to human disease.
0 Communities
1 Members
0 Resources
MeSH Terms
Association of gain-of-function EPHX2 polymorphism Lys55Arg with acute kidney injury following cardiac surgery.
Shuey MM, Billings FT, Wei S, Milne GL, Nian H, Yu C, Brown NJ
(2017) PLoS One 12: e0175292
MeSH Terms: Acute Kidney Injury, Aged, Cohort Studies, Coronary Artery Bypass, Eicosapentaenoic Acid, Epoxide Hydrolases, Female, Genotype, Glomerular Filtration Rate, Humans, Incidence, Lysine, Male, Middle Aged, Polymorphism, Genetic
Show Abstract · Added November 7, 2018
Twenty to thirty percent of patients undergoing cardiac surgery develop acute kidney injury (AKI). In mice, inhibition of soluble epoxide hydrolase (sEH) attenuates renal injury following ischemia-reperfusion. We tested the hypothesis that functional variants of EPHX2, encoding sEH, are associated with AKI after cardiac surgery. We genotyped patients in two independent cardiac surgery cohorts for functional EPHX2 polymorphisms, Lys55Arg and Arg287Gln, and determined AKI using Acute Kidney Injury Network criteria. The 287Gln variant was not associated with AKI. In the discovery cohort, the gain-of-function 55Arg variant was associated with an increased incidence of AKI in univariate (p = 0.03) and multivariable (p = 0.04) analyses. In white patients without chronic kidney disease (CKD), the 55Arg variant was independently associated with AKI with an OR of 2.04 (95% CI 0.95-4.42) for 55Arg heterozygotes and 31.53 (1.57-633.19) for homozygotes (p = 0.02), after controlling for age, sex, body mass index, baseline estimated glomerular filtration rate, and use of cardiopulmonary bypass. These findings were replicated in the second cardiac surgery cohort. 12,13- and total- dihydroxyoctadecanoic acids (DiHOME): epoxyoctadecanoic acids (EpOME) ratios were increased in EPHX2 55Arg variant carriers, consistent with increased hydrolase activity. The EPHX2 Lys55Arg polymorphism is associated with AKI following cardiac surgery in patients without preexisting CKD. Pharmacological strategies to decrease sEH activity might decrease postoperative AKI.
0 Communities
1 Members
0 Resources
MeSH Terms
Differential manipulation of arrestin-3 binding to basal and agonist-activated G protein-coupled receptors.
Prokop S, Perry NA, Vishnivetskiy SA, Toth AD, Inoue A, Milligan G, Iverson TM, Hunyady L, Gurevich VV
(2017) Cell Signal 36: 98-107
MeSH Terms: Amino Acid Sequence, Animals, Arrestins, COS Cells, Cattle, Chlorocebus aethiops, Conserved Sequence, HEK293 Cells, Humans, Lysine, Mutant Proteins, Mutation, Protein Binding, Protein Structure, Secondary, Receptors, G-Protein-Coupled, Rhodopsin
Show Abstract · Added March 14, 2018
Non-visual arrestins interact with hundreds of different G protein-coupled receptors (GPCRs). Here we show that by introducing mutations into elements that directly bind receptors, the specificity of arrestin-3 can be altered. Several mutations in the two parts of the central "crest" of the arrestin molecule, middle-loop and C-loop, enhanced or reduced arrestin-3 interactions with several GPCRs in receptor subtype and functional state-specific manner. For example, the Lys139Ile substitution in the middle-loop dramatically enhanced the binding to inactive M muscarinic receptor, so that agonist activation of the M did not further increase arrestin-3 binding. Thus, the Lys139Ile mutation made arrestin-3 essentially an activation-independent binding partner of M, whereas its interactions with other receptors, including the β-adrenergic receptor and the D and D dopamine receptors, retained normal activation dependence. In contrast, the Ala248Val mutation enhanced agonist-induced arrestin-3 binding to the β-adrenergic and D dopamine receptors, while reducing its interaction with the D dopamine receptor. These mutations represent the first example of altering arrestin specificity via enhancement of the arrestin-receptor interactions rather than selective reduction of the binding to certain subtypes.
Copyright © 2017. Published by Elsevier Inc.
0 Communities
2 Members
0 Resources
16 MeSH Terms
SIRT4 Is a Lysine Deacylase that Controls Leucine Metabolism and Insulin Secretion.
Anderson KA, Huynh FK, Fisher-Wellman K, Stuart JD, Peterson BS, Douros JD, Wagner GR, Thompson JW, Madsen AS, Green MF, Sivley RM, Ilkayeva OR, Stevens RD, Backos DS, Capra JA, Olsen CA, Campbell JE, Muoio DM, Grimsrud PA, Hirschey MD
(2017) Cell Metab 25: 838-855.e15
MeSH Terms: Amidohydrolases, Amino Acid Sequence, Animals, Carbon-Carbon Ligases, Glucose, HEK293 Cells, Homeostasis, Humans, Insulin, Insulin Resistance, Insulin Secretion, Leucine, Lysine, Metabolic Flux Analysis, Mice, Inbred C57BL, Mice, Knockout, Mitochondrial Proteins, Models, Molecular, Phylogeny, Sirtuins
Show Abstract · Added April 18, 2017
Sirtuins are NAD-dependent protein deacylases that regulate several aspects of metabolism and aging. In contrast to the other mammalian sirtuins, the primary enzymatic activity of mitochondrial sirtuin 4 (SIRT4) and its overall role in metabolic control have remained enigmatic. Using a combination of phylogenetics, structural biology, and enzymology, we show that SIRT4 removes three acyl moieties from lysine residues: methylglutaryl (MG)-, hydroxymethylglutaryl (HMG)-, and 3-methylglutaconyl (MGc)-lysine. The metabolites leading to these post-translational modifications are intermediates in leucine oxidation, and we show a primary role for SIRT4 in controlling this pathway in mice. Furthermore, we find that dysregulated leucine metabolism in SIRT4KO mice leads to elevated basal and stimulated insulin secretion, which progressively develops into glucose intolerance and insulin resistance. These findings identify a robust enzymatic activity for SIRT4, uncover a mechanism controlling branched-chain amino acid flux, and position SIRT4 as a crucial player maintaining insulin secretion and glucose homeostasis during aging.
Copyright © 2017 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
20 MeSH Terms
The Par3 polarity protein is an exocyst receptor essential for mammary cell survival.
Ahmed SM, Macara IG
(2017) Nat Commun 8: 14867
MeSH Terms: Animals, Apoptosis, Cadherins, Cell Adhesion Molecules, Cell Line, Cell Polarity, Cell Survival, Enzyme Activation, Epithelial Cells, Female, Gene Knockdown Techniques, Golgi Apparatus, Humans, Lysine, Mammary Glands, Animal, Models, Biological, PTEN Phosphohydrolase, Phosphatidylinositol Phosphates, Phosphorylation, Protein Domains, Proto-Oncogene Proteins c-akt, Vesicular Transport Proteins, rab GTP-Binding Proteins
Show Abstract · Added April 26, 2017
The exocyst is an essential component of the secretory pathway required for delivery of basolateral proteins to the plasma membranes of epithelial cells. Delivery occurs adjacent to tight junctions (TJ), suggesting that it recognizes a receptor at this location. However, no such receptor has been identified. The Par3 polarity protein associates with TJs but has no known function in membrane traffic. We now show that, unexpectedly, Par3 is essential for mammary cell survival. Par3 silencing causes apoptosis, triggered by phosphoinositide trisphosphate depletion and decreased Akt phosphorylation, resulting from failure of the exocyst to deliver basolateral proteins to the cortex. A small region of PAR3 binds directly to Exo70 and is sufficient for exocyst docking, membrane-protein delivery and cell survival. PAR3 lacking this domain can associate with the cortex but cannot support exocyst function. We conclude that Par3 is the long-sought exocyst receptor required for targeted membrane-protein delivery.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Design, Synthesis, and Biological Activity of Substrate Competitive SMYD2 Inhibitors.
Cowen SD, Russell D, Dakin LA, Chen H, Larsen NA, Godin R, Throner S, Zheng X, Molina A, Wu J, Cheung T, Howard T, Garcia-Arenas R, Keen N, Pendleton CS, Pietenpol JA, Ferguson AD
(2016) J Med Chem 59: 11079-11097
MeSH Terms: Cell Line, Tumor, Cell Proliferation, Dose-Response Relationship, Drug, Drug Design, Enzyme Inhibitors, HCT116 Cells, Histone-Lysine N-Methyltransferase, Humans, Molecular Structure, Structure-Activity Relationship
Show Abstract · Added April 9, 2017
Protein lysine methyltransferases (KMTs) have emerged as important regulators of epigenetic signaling. These enzymes catalyze the transfer of donor methyl groups from the cofactor S-adenosylmethionine to specific acceptor lysine residues on histones, leading to changes in chromatin structure and transcriptional regulation. These enzymes also methylate an array of nonhistone proteins, suggesting additional mechanisms by which they influence cellular physiology. SMYD2 is reported to be an oncogenic methyltransferase that represses the functional activity of the tumor suppressor proteins p53 and RB. HTS screening led to identification of five distinct substrate-competitive chemical series. Determination of liganded crystal structures of SMYD2 contributed significantly to "hit-to-lead" design efforts, culminating in the creation of potent and selective inhibitors that were used to understand the functional consequences of SMYD2 inhibition. Taken together, these results have broad implications for inhibitor design against KMTs and clearly demonstrate the potential for developing novel therapies against these enzymes.
1 Communities
1 Members
0 Resources
10 MeSH Terms