Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 707

Publication Record

Connections

Abatacept for Severe Immune Checkpoint Inhibitor-Associated Myocarditis.
Salem JE, Allenbach Y, Vozy A, Brechot N, Johnson DB, Moslehi JJ, Kerneis M
(2019) N Engl J Med 380: 2377-2379
MeSH Terms: Abatacept, Aged, Antineoplastic Agents, Immunological, Female, Humans, Immunosuppressive Agents, Lung Neoplasms, Myocarditis, Myositis, Nivolumab, Programmed Cell Death 1 Receptor
Added November 12, 2019
0 Communities
1 Members
0 Resources
MeSH Terms
Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data.
Rudin CM, Poirier JT, Byers LA, Dive C, Dowlati A, George J, Heymach JV, Johnson JE, Lehman JM, MacPherson D, Massion PP, Minna JD, Oliver TG, Quaranta V, Sage J, Thomas RK, Vakoc CR, Gazdar AF
(2019) Nat Rev Cancer 19: 289-297
MeSH Terms: Animals, Gene Expression Regulation, Neoplastic, Heterografts, Humans, Lung Neoplasms, Mice, Small Cell Lung Carcinoma, Transcription Factors, Transcription, Genetic
Show Abstract · Added March 30, 2020
Small cell lung cancer (SCLC) is an exceptionally lethal malignancy for which more effective therapies are urgently needed. Several lines of evidence, from SCLC primary human tumours, patient-derived xenografts, cancer cell lines and genetically engineered mouse models, appear to be converging on a new model of SCLC subtypes defined by differential expression of four key transcription regulators: achaete-scute homologue 1 (ASCL1; also known as ASH1), neurogenic differentiation factor 1 (NeuroD1), yes-associated protein 1 (YAP1) and POU class 2 homeobox 3 (POU2F3). In this Perspectives article, we review and synthesize these recent lines of evidence and propose a working nomenclature for SCLC subtypes defined by relative expression of these four factors. Defining the unique therapeutic vulnerabilities of these subtypes of SCLC should help to focus and accelerate therapeutic research, leading to rationally targeted approaches that may ultimately improve clinical outcomes for patients with this disease.
0 Communities
1 Members
0 Resources
MeSH Terms
On-target Resistance to the Mutant-Selective EGFR Inhibitor Osimertinib Can Develop in an Allele-Specific Manner Dependent on the Original EGFR-Activating Mutation.
Brown BP, Zhang YK, Westover D, Yan Y, Qiao H, Huang V, Du Z, Smith JA, Ross JS, Miller VA, Ali S, Bazhenova L, Schrock AB, Meiler J, Lovly CM
(2019) Clin Cancer Res 25: 3341-3351
MeSH Terms: Acrylamides, Alleles, Aniline Compounds, Carcinoma, Non-Small-Cell Lung, Cell Line, Tumor, Dose-Response Relationship, Drug, Drug Resistance, Neoplasm, ErbB Receptors, Exons, Gene Expression Profiling, Humans, Lung Neoplasms, Models, Molecular, Mutation, Protein Binding, Protein Kinase Inhibitors, Structure-Activity Relationship
Show Abstract · Added March 21, 2020
PURPOSE - The third-generation EGFR inhibitor, osimertinib, is the first mutant-selective inhibitor that has received regulatory approval for the treatment of patients with -mutant lung cancer. Despite the development of highly selective third-generation inhibitors, acquired resistance remains a significant clinical challenge. Recently, we and others have identified a novel osimertinib resistance mutation, G724S, which was not predicted in screens. Here, we investigate how G724S confers resistance to osimertinib. We combine structure-based predictive modeling of G724S in combination with the 2 most common EGFR-activating mutations, exon 19 deletion (Ex19Del) and L858R, with drug-response models and patient genomic profiling.
RESULTS - Our simulations suggest that the G724S mutation selectively reduces osimertinib-binding affinity in the context of Ex19Del. Consistent with our simulations, cell lines transduced with Ex19Del/G724S demonstrate resistance to osimertinib, whereas cells transduced with L858R/G724S are sensitive to osimertinib. Subsequent clinical genomic profiling data further suggest G724S occurs with Ex19Del but not L858R. Furthermore, we demonstrate that Ex19Del/G724S retains sensitivity to afatinib, but not to erlotinib, suggesting a possible therapy for patients at the time of disease relapse.
CONCLUSIONS - Altogether, these data suggest that G724S is an allele-specific resistance mutation emerging in the context of Ex19Del but not L858R. Our results fundamentally reframe the problem of targeted therapy resistance from one focused on the "drug-resistance mutation" pair to one focused on the "activating mutation-drug-resistance mutation" trio. This has broad implications across clinical oncology.
©2019 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Treatment-Induced Tumor Cell Apoptosis and Secondary Necrosis Drive Tumor Progression in the Residual Tumor Microenvironment through MerTK and IDO1.
Werfel TA, Elion DL, Rahman B, Hicks DJ, Sanchez V, Gonzales-Ericsson PI, Nixon MJ, James JL, Balko JM, Scherle PA, Koblish HK, Cook RS
(2019) Cancer Res 79: 171-182
MeSH Terms: Animals, Antineoplastic Agents, Apoptosis, Female, Indoleamine-Pyrrole 2,3,-Dioxygenase, Inflammation, Lapatinib, Lung Neoplasms, Macrophages, Mammary Neoplasms, Experimental, Mice, Necrosis, Phagocytosis, Receptor, ErbB-2, T-Lymphocytes, Regulatory, Tumor Microenvironment, c-Mer Tyrosine Kinase
Show Abstract · Added April 15, 2019
Efferocytosis is the process by which apoptotic cells are cleared from tissue by phagocytic cells. The removal of apoptotic cells prevents them from undergoing secondary necrosis and releasing their inflammation-inducing intracellular contents. Efferocytosis also limits tissue damage by increasing immunosuppressive cytokines and leukocytes and maintains tissue homeostasis by promoting tolerance to antigens derived from apoptotic cells. Thus, tumor cell efferocytosis following cytotoxic cancer treatment could impart tolerance to tumor cells evading treatment-induced apoptosis with deleterious consequences in tumor residual disease. We report here that efferocytosis cleared apoptotic tumor cells in residual disease of lapatinib-treated HER2 mammary tumors in MMTV-Neu mice, increased immunosuppressive cytokines, myeloid-derived suppressor cells (MDSC), and regulatory T cells (Treg). Blockade of efferocytosis induced secondary necrosis of apoptotic cells, but failed to prevent increased tumor MDSCs, Treg, and immunosuppressive cytokines. We found that efferocytosis stimulated expression of IFN-γ, which stimulated the expression of indoleamine-2,3-dioxegenase (IDO) 1, an immune regulator known for driving maternal-fetal antigen tolerance. Combined inhibition of efferocytosis and IDO1 in tumor residual disease decreased apoptotic cell- and necrotic cell-induced immunosuppressive phenotypes, blocked tumor metastasis, and caused tumor regression in 60% of MMTV-Neu mice. This suggests that apoptotic and necrotic tumor cells, via efferocytosis and IDO1, respectively, promote tumor 'homeostasis' and progression. SIGNIFICANCE: These findings show in a model of HER2 breast cancer that necrosis secondary to impaired efferocytosis activates IDO1 to drive immunosuppression and tumor progression.
©2018 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Somatostatin receptor 2 signaling promotes growth and tumor survival in small-cell lung cancer.
Lehman JM, Hoeksema MD, Staub J, Qian J, Harris B, Callison JC, Miao J, Shi C, Eisenberg R, Chen H, Chen SC, Massion PP
(2019) Int J Cancer 144: 1104-1114
MeSH Terms: AMP-Activated Protein Kinases, Animals, Apoptosis, Basic Helix-Loop-Helix Transcription Factors, Biomarkers, Tumor, Cell Line, Tumor, Cell Proliferation, Disease Progression, Down-Regulation, Humans, Lung Neoplasms, Mice, Mice, Nude, Nerve Tissue Proteins, RNA, Messenger, Receptors, Somatostatin, Signal Transduction, Small Cell Lung Carcinoma
Show Abstract · Added March 31, 2020
Somatostatin receptor 2 (SSTR2) is overexpressed in a majority of neuroendocrine neoplasms, including small-cell lung carcinomas (SCLCs). SSTR2 was previously considered an inhibitory receptor on cell growth, but its agonists had poor clinical responses in multiple clinical trials. The role of this receptor as a potential therapeutic target in lung cancer merits further investigation. We evaluated the expression of SSTR2 in a cohort of 96 primary tumors from patients with SCLC and found 48% expressed SSTR2. Correlation analysis in both CCLE and an SCLC RNAseq cohort confirmed high-level expression and identified an association between NEUROD1 and SSTR2. There was a significant association with SSTR2 expression profile and poor clinical outcome. We tested whether SSTR2 expression might contribute to tumor progression through activation of downstream signaling pathways, using in vitro and in vivo systems and downregulated SSTR2 expression in lung cancer cells by shRNA. SSTR2 downregulation led to increased apoptosis and dramatically decreased tumor growth in vitro and in vivo in multiple cell lines with decreased AMPKα phosphorylation and increased oxidative metabolism. These results demonstrate a role for SSTR2 signaling in SCLC and suggest that SSTR2 is a poor prognostic biomarker in SCLC and potential future therapeutic signaling target.
© 2018 UICC.
0 Communities
1 Members
0 Resources
MeSH Terms
Epithelial-Mesenchymal Transition Induces Podocalyxin to Promote Extravasation via Ezrin Signaling.
Fröse J, Chen MB, Hebron KE, Reinhardt F, Hajal C, Zijlstra A, Kamm RD, Weinberg RA
(2018) Cell Rep 24: 962-972
MeSH Terms: Animals, Breast Neoplasms, Cell Line, Tumor, Cytoskeletal Proteins, Epithelial-Mesenchymal Transition, Female, Heterografts, Humans, Lung Neoplasms, Male, Mice, Mice, Inbred NOD, Mice, SCID, Pancreatic Neoplasms, Sialoglycoproteins, Signal Transduction
Show Abstract · Added April 10, 2019
The epithelial-mesenchymal transition (EMT) endows carcinoma cells with traits needed to complete many of the steps leading to metastasis formation, but its contributions specifically to the late step of extravasation remain understudied. We find that breast cancer cells that have undergone an EMT extravasate more efficiently from blood vessels both in vitro and in vivo. Analysis of gene expression changes associated with the EMT program led to the identification of an EMT-induced cell-surface protein, podocalyxin (PODXL), as a key mediator of extravasation in mesenchymal breast and pancreatic carcinoma cells. PODXL promotes extravasation through direct interaction of its intracellular domain with the cytoskeletal linker protein ezrin. Ezrin proceeds to establish dorsal cortical polarity, enabling the transition of cancer cells from a non-polarized, rounded cell morphology to an invasive extravasation-competent shape. Hence, the EMT program can directly enhance the efficiency of extravasation and subsequent metastasis formation through a PODXL-ezrin signaling axis.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
16 MeSH Terms
xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression.
Ji X, Qian J, Rahman SMJ, Siska PJ, Zou Y, Harris BK, Hoeksema MD, Trenary IA, Heidi C, Eisenberg R, Rathmell JC, Young JD, Massion PP
(2018) Oncogene 37: 5007-5019
MeSH Terms: 3T3 Cells, A549 Cells, Amino Acid Transport System y+, Animals, Carcinoma, Non-Small-Cell Lung, Cell Line, Cell Line, Tumor, Cell Proliferation, Cell Survival, Cystine, Cytoplasm, Disease Progression, Female, Glutamine, Humans, Lung Neoplasms, Male, Mice, Middle Aged
Show Abstract · Added March 28, 2019
Many tumors increase uptake and dependence on glucose, cystine or glutamine. These basic observations on cancer cell metabolism have opened multiple new diagnostic and therapeutic avenues in cancer research. Recent studies demonstrated that smoking could induce the expression of xCT (SLC7A11) in oral cancer cells, suggesting that overexpression of xCT may support lung tumor progression. We hypothesized that overexpression of xCT occurs in lung cancer cells to satisfy the metabolic requirements for growth and survival. Our results demonstrated that 1) xCT was highly expressed at the cytoplasmic membrane in non-small cell lung cancer (NSCLC), 2) the expression of xCT was correlated with advanced stage and predicted a worse 5-year survival, 3) targeting xCT transport activity in xCT overexpressing NSCLC cells with sulfasalazine decreased cell proliferation and invasion in vitro and in vivo and 4) increased dependence on glutamine was observed in xCT overexpressed normal airway epithelial cells. These results suggested that xCT regulate metabolic requirements during lung cancer progression and be a potential therapeutic target in NSCLC.
0 Communities
1 Members
0 Resources
MeSH Terms
p52 expression enhances lung cancer progression.
Saxon JA, Yu H, Polosukhin VV, Stathopoulos GT, Gleaves LA, McLoed AG, Massion PP, Yull FE, Zhao Z, Blackwell TS
(2018) Sci Rep 8: 6078
MeSH Terms: Adenocarcinoma of Lung, Animals, Cell Proliferation, Disease Progression, Gene Expression, Gene Expression Regulation, Neoplastic, Humans, Lung, Lung Neoplasms, Mice, Transgenic, Middle Aged, NF-kappa B p52 Subunit, Prognosis, Tumor Burden
Show Abstract · Added May 29, 2018
While many studies have demonstrated that canonical NF-κB signaling is a central pathway in lung tumorigenesis, the role of non-canonical NF-κB signaling in lung cancer remains undefined. We observed frequent nuclear accumulation of the non-canonical NF-κB component p100/p52 in human lung adenocarcinoma. To investigate the impact of non-canonical NF-κB signaling on lung carcinogenesis, we employed transgenic mice with doxycycline-inducible expression of p52 in airway epithelial cells. p52 over-expression led to increased tumor number and progression after injection of the carcinogen urethane. Gene expression analysis of lungs from transgenic mice combined with in vitro studies suggested that p52 promotes proliferation of lung epithelial cells through regulation of cell cycle-associated genes. Using gene expression and patient information from The Cancer Genome Atlas (TCGA) database, we found that expression of p52-associated genes was increased in lung adenocarcinomas and correlated with reduced survival, even in early stage disease. Analysis of p52-associated gene expression in additional human lung adenocarcinoma datasets corroborated these findings. Together, these studies implicate the non-canonical NF-κB component p52 in lung carcinogenesis and suggest modulation of p52 activity and/or downstream mediators as new therapeutic targets.
1 Communities
1 Members
0 Resources
14 MeSH Terms
IκB Kinase α Is Required for Development and Progression of -Mutant Lung Adenocarcinoma.
Vreka M, Lilis I, Papageorgopoulou M, Giotopoulou GA, Lianou M, Giopanou I, Kanellakis NI, Spella M, Agalioti T, Armenis V, Goldmann T, Marwitz S, Yull FE, Blackwell TS, Pasparakis M, Marazioti A, Stathopoulos GT
(2018) Cancer Res 78: 2939-2951
MeSH Terms: A549 Cells, Adenocarcinoma of Lung, Animals, Cell Line, Cell Line, Tumor, Disease Progression, HEK293 Cells, Humans, I-kappa B Kinase, Lung Neoplasms, Mice, Mice, Inbred C57BL, NF-kappa B, Protein-Serine-Threonine Kinases, Proto-Oncogene Proteins p21(ras), Signal Transduction
Show Abstract · Added March 31, 2020
Although oncogenic activation of NFκB has been identified in various tumors, the NFκB-activating kinases (inhibitor of NFκB kinases, IKK) responsible for this are elusive. In this study, we determined the role of IKKα and IKKβ in -mutant lung adenocarcinomas induced by the carcinogen urethane and by respiratory epithelial expression of oncogenic Using NFκB reporter mice and conditional deletions of IKKα and IKKβ, we identified two distinct early and late activation phases of NFκB during chemical and genetic lung adenocarcinoma development, which were characterized by nuclear translocation of B, IκBβ, and IKKα in tumor-initiated cells. IKKα was a cardinal tumor promoter in chemical and genetic -mutant lung adenocarcinoma, and respiratory epithelial IKKα-deficient mice were markedly protected from the disease. IKKα specifically cooperated with mutant for tumor induction in a cell-autonomous fashion, providing mutant cells with a survival advantage and IKKα was highly expressed in human lung adenocarcinoma, and a heat shock protein 90 inhibitor that blocks IKK function delivered superior effects against -mutant lung adenocarcinoma compared with a specific IKKβ inhibitor. These results demonstrate an actionable requirement for IKKα in -mutant lung adenocarcinoma, marking the kinase as a therapeutic target against this disease. These findings report a novel requirement for IKKα in mutant lung tumor formation, with potential therapeutic applications. .
©2018 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
MeSH Terms
Overall and Central Obesity and Risk of Lung Cancer: A Pooled Analysis.
Yu D, Zheng W, Johansson M, Lan Q, Park Y, White E, Matthews CE, Sawada N, Gao YT, Robien K, Sinha R, Langhammer A, Kaaks R, Giovannucci EL, Liao LM, Xiang YB, Lazovich D, Peters U, Zhang X, Bueno-de-Mesquita B, Willett WC, Tsugane S, Takata Y, Smith-Warner SA, Blot W, Shu XO
(2018) J Natl Cancer Inst 110: 831-842
MeSH Terms: Adult, Aged, Body Mass Index, Cohort Studies, Female, Humans, Lung Neoplasms, Male, Middle Aged, Obesity, Obesity, Abdominal, Risk Factors, Waist Circumference, Waist-Hip Ratio
Show Abstract · Added March 26, 2018
Background - The obesity-lung cancer association remains controversial. Concerns over confounding by smoking and reverse causation persist. The influence of obesity type and effect modifications by race/ethnicity and tumor histology are largely unexplored.
Methods - We examined associations of body mass index (BMI), waist circumference (WC), and waist-hip ratio (WHR) with lung cancer risk among 1.6 million Americans, Europeans, and Asians. Cox proportional hazard regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) with adjustment for potential confounders. Analyses for WC/WHR were further adjusted for BMI. The joint effect of BMI and WC/WHR was also evaluated.
Results - During an average 12-year follow-up, 23 732 incident lung cancer cases were identified. While BMI was generally associated with a decreased risk, WC and WHR were associated with increased risk after controlling for BMI. These associations were seen 10 years before diagnosis in smokers and never smokers, were strongest among blacks, and varied by histological type. After excluding the first five years of follow-up, hazard ratios per 5 kg/m2 increase in BMI were 0.95 (95% CI = 0.90 to 1.00), 0.92 (95% CI = 0.89 to 0.95), and 0.89 (95% CI = 0.86 to 0.91) in never, former, and current smokers, and 0.86 (95% CI = 0.84 to 0.89), 0.94 (95% CI = 0.90 to 0.99), and 1.09 (95% CI = 1.03 to 1.15) for adenocarcinoma, squamous cell, and small cell carcinoma, respectively. Hazard ratios per 10 cm increase in WC were 1.09 (95% CI = 1.00 to 1.18), 1.12 (95% CI = 1.07 to 1.17), and 1.11 (95% CI = 1.07 to 1.16) in never, former, and current smokers, and 1.06 (95% CI = 1.01 to 1.12), 1.20 (95% CI = 1.12 to 1.29), and 1.13 (95% CI = 1.04 to 1.23) for adenocarcinoma, squamous cell, and small cell carcinoma, respectively. Participants with BMIs of less than 25 kg/m2 but high WC had a 40% higher risk (HR = 1.40, 95% CI = 1.26 to 1.56) than those with BMIs of 25 kg/m2 or greater but normal/moderate WC.
Conclusions - The inverse BMI-lung cancer association is not entirely due to smoking and reverse causation. Central obesity, particularly concurrent with low BMI, may help identify high-risk populations for lung cancer.
0 Communities
2 Members
0 Resources
14 MeSH Terms