Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 95

Publication Record

Connections

CRISPR/Cas9 engineering of a KIM-1 reporter human proximal tubule cell line.
Veach RA, Wilson MH
(2018) PLoS One 13: e0204487
MeSH Terms: Acute Kidney Injury, CRISPR-Cas Systems, Cell Line, Cisplatin, Gene Knock-In Techniques, Gene Targeting, Genes, Reporter, Genetic Engineering, Glucose, Green Fluorescent Proteins, Hepatitis A Virus Cellular Receptor 1, Homologous Recombination, Humans, Kidney Tubules, Proximal, Luciferases, Up-Regulation
Show Abstract · Added December 13, 2018
We used the CRISPR/Cas9 system to knock-in reporter transgenes at the kidney injury molecule-1 (KIM-1) locus and isolated human proximal tubule cell (HK-2) clones. PCR verified targeted knock-in of the luciferase and eGFP reporter at the KIM-1 locus. HK-2-KIM-1 reporter cells responded to various stimuli including hypoxia, cisplatin, and high glucose, indicative of upregulation of KIM-1 expression. We attempted using CRISPR/Cas9 to also engineer the KIM-1 reporter in telomerase-immortalized human RPTEC cells. However, these cells demonstrated an inability to undergo homologous recombination at the target locus. KIM-1-reporter human proximal tubular cells could be valuable tools in drug discovery for molecules inhibiting kidney injury. Additionally, our gene targeting strategy could be used in other cell lines to evaluate the biology of KIM-1 in vitro or in vivo.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Combinatorial optimization of PEG architecture and hydrophobic content improves ternary siRNA polyplex stability, pharmacokinetics, and potency in vivo.
Werfel TA, Jackson MA, Kavanaugh TE, Kirkbride KC, Miteva M, Giorgio TD, Duvall C
(2017) J Control Release 255: 12-26
MeSH Terms: Animals, Cell Line, Cell Line, Tumor, Female, Humans, Hydrophobic and Hydrophilic Interactions, Luciferases, Methacrylates, Mice, Mice, Nude, Polyethylene Glycols, RNA, Small Interfering, Tissue Distribution
Show Abstract · Added March 14, 2018
A rationally-designed library of ternary siRNA polyplexes was developed and screened for gene silencing efficacy in vitro and in vivo with the goal of overcoming both cell-level and systemic delivery barriers. [2-(dimethylamino)ethyl methacrylate] (DMAEMA) was homopolymerized or copolymerized (50mol% each) with butyl methacrylate (BMA) from a reversible addition - fragmentation chain transfer (RAFT) chain transfer agent, with and without pre-conjugation to polyethylene glycol (PEG). Both single block polymers were tested as core-forming units, and both PEGylated, diblock polymers were screened as corona-forming units. Ternary siRNA polyplexes were assembled with varied amounts and ratios of core-forming polymers to PEGylated corona-forming polymers. The impact of polymer composition/ratio, hydrophobe (BMA) placement, and surface PEGylation density was correlated to important outcomes such as polyplex size, stability, pH-dependent membrane disruptive activity, biocompatibility, and gene silencing efficiency. The lead formulation, DB4-PDB12, was optimally PEGylated not only to ensure colloidal stability (no change in size by DLS between 0 and 24h) and neutral surface charge (0.139mV) but also to maintain higher cell uptake (>90% positive cells) than the most densely PEGylated particles. The DB4-PDB12 polyplexes also incorporated BMA in both the polyplex core- and corona-forming polymers, resulting in robust endosomolysis and in vitro siRNA silencing (~85% protein level knockdown) of the model gene luciferase across multiple cell types. Further, the DB4-PDB12 polyplexes exhibited greater stability, increased blood circulation time, reduced renal clearance, increased tumor biodistribution, and greater silencing of luciferase compared to our previously-optimized, binary parent formulation following intravenous (i.v.) delivery. This polyplex library approach enabled concomitant optimization of the composition and ratio of core- and corona-forming polymers (indirectly tuning PEGylation density) and identification of a ternary nanomedicine optimized to overcome important siRNA delivery barriers in vitro and in vivo.
Copyright © 2017 Elsevier B.V. All rights reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Temporal self-regulation of transposition through host-independent transposase rodlet formation.
Woodard LE, Downes LM, Lee YC, Kaja A, Terefe ES, Wilson MH
(2017) Nucleic Acids Res 45: 353-366
MeSH Terms: Animals, DNA Transposable Elements, Female, Gene Expression Regulation, Genes, Reporter, HEK293 Cells, HeLa Cells, Humans, Insect Proteins, Luciferases, Male, Mice, Optical Imaging, Time-Lapse Imaging, Transposases, Tribolium
Show Abstract · Added December 8, 2017
Transposons are highly abundant in eukaryotic genomes, but their mobilization must be finely tuned to maintain host organism fitness and allow for transposon propagation. Forty percent of the human genome is comprised of transposable element sequences, and the most abundant cut-and-paste transposons are from the hAT superfamily. We found that the hAT transposase TcBuster from Tribolium castaneum formed filamentous structures, or rodlets, in human tissue culture cells, after gene transfer to adult mice, and ex vivo in cell-free conditions, indicating that host co-factors or cellular structures were not required for rodlet formation. Time-lapsed imaging of GFP-laced rodlets in human cells revealed that they formed quickly in a dynamic process involving fusion and fission. We delayed the availability of the transposon DNA and found that transposition declined after transposase concentrations became high enough for visible transposase rodlets to appear. In combination with earlier findings for maize Ac elements, these results give insight into transposase overproduction inhibition by demonstrating that the appearance of transposase protein structures and the end of active transposition are simultaneous, an effect with implications for genetic engineering and horizontal gene transfer.
Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
0 Communities
2 Members
0 Resources
16 MeSH Terms
Coupling optogenetic stimulation with NanoLuc-based luminescence (BRET) Ca sensing.
Yang J, Cumberbatch D, Centanni S, Shi SQ, Winder D, Webb D, Johnson CH
(2016) Nat Commun 7: 13268
MeSH Terms: Animals, Batrachoidiformes, Calcium, Fluorescence Resonance Energy Transfer, HEK293 Cells, HeLa Cells, Humans, Luciferases, Luminescence, Luminescent Measurements, Microscopy, Fluorescence, Optogenetics
Show Abstract · Added March 26, 2019
Optogenetic techniques allow intracellular manipulation of Ca by illumination of light-absorbing probe molecules such as channelrhodopsins and melanopsins. The consequences of optogenetic stimulation would optimally be recorded by non-invasive optical methods. However, most current optical methods for monitoring Ca levels are based on fluorescence excitation that can cause unwanted stimulation of the optogenetic probe and other undesirable effects such as tissue autofluorescence. Luminescence is an alternate optical technology that avoids the problems associated with fluorescence. Using a new bright luciferase, we here develop a genetically encoded Ca sensor that is ratiometric by virtue of bioluminescence resonance energy transfer (BRET). This sensor has a large dynamic range and partners optimally with optogenetic probes. Ca fluxes that are elicited by brief pulses of light to cultured cells expressing melanopsin and to neurons-expressing channelrhodopsin are quantified and imaged with the BRET Ca sensor in darkness, thereby avoiding undesirable consequences of fluorescence irradiation.
0 Communities
1 Members
0 Resources
MeSH Terms
Polymorphisms in a Putative Enhancer at the 10q21.2 Breast Cancer Risk Locus Regulate NRBF2 Expression.
Darabi H, McCue K, Beesley J, Michailidou K, Nord S, Kar S, Humphreys K, Thompson D, Ghoussaini M, Bolla MK, Dennis J, Wang Q, Canisius S, Scott CG, Apicella C, Hopper JL, Southey MC, Stone J, Broeks A, Schmidt MK, Scott RJ, Lophatananon A, Muir K, Beckmann MW, Ekici AB, Fasching PA, Heusinger K, Dos-Santos-Silva I, Peto J, Tomlinson I, Sawyer EJ, Burwinkel B, Marme F, Guénel P, Truong T, Bojesen SE, Flyger H, Benitez J, González-Neira A, Anton-Culver H, Neuhausen SL, Arndt V, Brenner H, Engel C, Meindl A, Schmutzler RK, German Consortium of Hereditary Breast and Ovarian Cancer, Arnold N, Brauch H, Hamann U, Chang-Claude J, Khan S, Nevanlinna H, Ito H, Matsuo K, Bogdanova NV, Dörk T, Lindblom A, Margolin S, kConFab/AOCS Investigators, Kosma VM, Mannermaa A, Tseng CC, Wu AH, Floris G, Lambrechts D, Rudolph A, Peterlongo P, Radice P, Couch FJ, Vachon C, Giles GG, McLean C, Milne RL, Dugué PA, Haiman CA, Maskarinec G, Woolcott C, Henderson BE, Goldberg MS, Simard J, Teo SH, Mariapun S, Helland Å, Haakensen V, Zheng W, Beeghly-Fadiel A, Tamimi R, Jukkola-Vuorinen A, Winqvist R, Andrulis IL, Knight JA, Devilee P, Tollenaar RA, Figueroa J, García-Closas M, Czene K, Hooning MJ, Tilanus-Linthorst M, Li J, Gao YT, Shu XO, Cox A, Cross SS, Luben R, Khaw KT, Choi JY, Kang D, Hartman M, Lim WY, Kabisch M, Torres D, Jakubowska A, Lubinski J, McKay J, Sangrajrang S, Toland AE, Yannoukakos D, Shen CY, Yu JC, Ziogas A, Schoemaker MJ, Swerdlow A, Borresen-Dale AL, Kristensen V, French JD, Edwards SL, Dunning AM, Easton DF, Hall P, Chenevix-Trench G
(2015) Am J Hum Genet 97: 22-34
MeSH Terms: Age Factors, Asian Continental Ancestry Group, Body Mass Index, Breast Neoplasms, Chromosome Mapping, Chromosomes, Human, Pair 10, DNA-Binding Proteins, Enhancer Elements, Genetic, European Continental Ancestry Group, Female, Gene Expression Regulation, Genome-Wide Association Study, Genotype, Humans, Luciferases, Odds Ratio, Polymorphism, Single Nucleotide, Quantitative Trait Loci, Regression Analysis, Trans-Activators, Transcription Factors
Show Abstract · Added February 22, 2016
Genome-wide association studies have identified SNPs near ZNF365 at 10q21.2 that are associated with both breast cancer risk and mammographic density. To identify the most likely causal SNPs, we fine mapped the association signal by genotyping 428 SNPs across the region in 89,050 European and 12,893 Asian case and control subjects from the Breast Cancer Association Consortium. We identified four independent sets of correlated, highly trait-associated variants (iCHAVs), three of which were located within ZNF365. The most strongly risk-associated SNP, rs10995201 in iCHAV1, showed clear evidence of association with both estrogen receptor (ER)-positive (OR = 0.85 [0.82-0.88]) and ER-negative (OR = 0.87 [0.82-0.91]) disease, and was also the SNP most strongly associated with percent mammographic density. iCHAV2 (lead SNP, chr10: 64,258,684:D) and iCHAV3 (lead SNP, rs7922449) were also associated with ER-positive (OR = 0.93 [0.91-0.95] and OR = 1.06 [1.03-1.09]) and ER-negative (OR = 0.95 [0.91-0.98] and OR = 1.08 [1.04-1.13]) disease. There was weaker evidence for iCHAV4, located 5' of ADO, associated only with ER-positive breast cancer (OR = 0.93 [0.90-0.96]). We found 12, 17, 18, and 2 candidate causal SNPs for breast cancer in iCHAVs 1-4, respectively. Chromosome conformation capture analysis showed that iCHAV2 interacts with the ZNF365 and NRBF2 (more than 600 kb away) promoters in normal and cancerous breast epithelial cells. Luciferase assays did not identify SNPs that affect transactivation of ZNF365, but identified a protective haplotype in iCHAV2, associated with silencing of the NRBF2 promoter, implicating this gene in the etiology of breast cancer.
Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Small-molecule high-throughput screening utilizing Xenopus egg extract.
Broadus MR, Yew PR, Hann SR, Lee E
(2015) Methods Mol Biol 1263: 63-73
MeSH Terms: Animals, Cell-Free System, Drug Evaluation, Preclinical, Gene Expression, High-Throughput Screening Assays, In Vitro Techniques, Luciferases, Ovum, Recombinant Fusion Proteins, Small Molecule Libraries, Xenopus
Show Abstract · Added November 2, 2015
Screens for small-molecule modulators of biological pathways typically utilize cultured cell lines, purified proteins, or, recently, model organisms (e.g., zebrafish, Drosophila, C. elegans). Herein, we describe a method for using Xenopus laevis egg extract, a biologically active and highly tractable cell-free system that recapitulates a legion of complex chemical reactions found in intact cells. Specifically, we focus on the use of a luciferase-based fusion system to identify small-molecule modulators that affect protein turnover.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Genetic analysis of the localization of APOBEC3F to human immunodeficiency virus type 1 virion cores.
Donahue JP, Levinson RT, Sheehan JH, Sutton L, Taylor HE, Meiler J, D'Aquila RT, Song C
(2015) J Virol 89: 2415-24
MeSH Terms: Cell Line, Cytosine Deaminase, DNA Mutational Analysis, Genes, Reporter, HIV-1, Humans, Luciferases, Models, Molecular, Mutagenesis, Site-Directed, Mutation, Missense, Staining and Labeling, Virus Assembly, beta-Galactosidase
Show Abstract · Added January 24, 2015
UNLABELLED - Members of the APOBEC3 family of cytidine deaminases vary in their proportions of a virion-incorporated enzyme that is localized to mature retrovirus cores. We reported previously that APOBEC3F (A3F) was highly localized into mature human immunodeficiency virus type 1 (HIV-1) cores and identified that L306 in the C-terminal cytidine deaminase (CD) domain contributed to its core localization (C. Song, L. Sutton, M. Johnson, R. D'Aquila, J. Donahue, J Biol Chem 287:16965-16974, 2012, http://dx.doi.org/10.1074/jbc.M111.310839). We have now determined an additional genetic determinant(s) for A3F localization to HIV-1 cores. We found that one pair of leucines in each of A3F's C-terminal and N-terminal CD domains jointly determined the degree of localization of A3F into HIV-1 virion cores. These are A3F L306/L368 (C-terminal domain) and A3F L122/L184 (N-terminal domain). Alterations to one of these specific leucine residues in either of the two A3F CD domains (A3F L368A, L122A, and L184A) decreased core localization and diminished HIV restriction without changing virion packaging. Furthermore, double mutants in these leucine residues in each of A3F's two CD domains (A3F L368A plus L184A or A3F L368A plus L122A) still were packaged into virions but completely lost core localization and anti-HIV activity. HIV virion core localization of A3F is genetically separable from its virion packaging, and anti-HIV activity requires some core localization.
IMPORTANCE - Specific leucine-leucine interactions are identified as necessary for A3F's core localization and anti-HIV activity but not for its packaging into virions. Understanding these signals may lead to novel strategies to enhance core localization that may augment effects of A3F against HIV and perhaps of other A3s against retroviruses, parvoviruses, and hepatitis B virus.
Copyright © 2015, American Society for Microbiology. All Rights Reserved.
1 Communities
3 Members
0 Resources
13 MeSH Terms
Genetic variants of Adam17 differentially regulate TGFβ signaling to modify vascular pathology in mice and humans.
Kawasaki K, Freimuth J, Meyer DS, Lee MM, Tochimoto-Okamoto A, Benzinou M, Clermont FF, Wu G, Roy R, Letteboer TG, Ploos van Amstel JK, Giraud S, Dupuis-Girod S, Lesca G, Westermann CJ, Coffey RJ, Akhurst RJ
(2014) Proc Natl Acad Sci U S A 111: 7723-8
MeSH Terms: ADAM Proteins, ADAM17 Protein, Animals, Blood Vessels, Gene Expression Regulation, Genetic Variation, Humans, Immunohistochemistry, Luciferases, Mice, Mice, Inbred C57BL, NIH 3T3 Cells, Signal Transduction, Smad2 Protein, Transforming Growth Factor beta, Transforming Growth Factor beta1
Show Abstract · Added February 19, 2015
Outcome of TGFβ1 signaling is context dependent and differs between individuals due to germ-line genetic variation. To explore innate genetic variants that determine differential outcome of reduced TGFβ1 signaling, we dissected the modifier locus Tgfbm3, on mouse chromosome 12. On a NIH/OlaHsd genetic background, the Tgfbm3b(C57) haplotype suppresses prenatal lethality of Tgfb1(-/-) embryos and enhances nuclear accumulation of mothers against decapentaplegic homolog 2 (Smad2) in embryonic cells. Amino acid polymorphisms within a disintegrin and metalloprotease 17 (Adam17) can account, at least in part, for this Tgfbm3b effect. ADAM17 is known to down-regulate Smad2 signaling by shedding the extracellular domain of TGFβRI, and we show that the C57 variant is hypomorphic for down-regulation of Smad2/3-driven transcription. Genetic variation at Tgfbm3 or pharmacological inhibition of ADAM17, modulates postnatal circulating endothelial progenitor cell (CEPC) numbers via effects on TGFβRI activity. Because CEPC numbers correlate with angiogenic potential, this suggests that variant Adam17 is an innate modifier of adult angiogenesis, acting through TGFβR1. To determine whether human ADAM17 is also polymorphic and interacts with TGFβ signaling in human vascular disease, we investigated hereditary hemorrhagic telangiectasia (HHT), which is caused by mutations in TGFβ/bone morphogenetic protein receptor genes, ENG, encoding endoglin (HHT1), or ACVRL1 encoding ALK1 (HHT2), and considered a disease of excessive abnormal angiogenesis. HHT manifests highly variable incidence and severity of clinical features, ranging from small mucocutaneous telangiectases to life-threatening visceral and cerebral arteriovenous malformations (AVMs). We show that ADAM17 SNPs associate with the presence of pulmonary AVM in HHT1 but not HHT2, indicating genetic variation in ADAM17 can potentiate a TGFβ-regulated vascular disease.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Secreted Gaussia princeps luciferase as a reporter of Escherichia coli replication in a mouse tissue cage model of infection.
Liu M, Blinn C, McLeod SM, Wiseman JW, Newman JV, Fisher SL, Walkup GK
(2014) PLoS One 9: e90382
MeSH Terms: Animals, Biocatalysis, Chromosomes, Bacterial, Colony Count, Microbial, Copepoda, Disease Models, Animal, Erwinia, Escherichia coli, Escherichia coli Infections, Genes, Reporter, Genetic Loci, Imaging, Three-Dimensional, Luciferases, Luminescence, Mice, Polysaccharide-Lyases
Show Abstract · Added March 20, 2014
Measurement of bacterial burden in animal infection models is a key component for both bacterial pathogenesis studies and therapeutic agent research. The traditional quantification means for in vivo bacterial burden requires frequent animal sacrifice and enumerating colony forming units (CFU) recovered from infection loci. To address these issues, researchers have developed a variety of luciferase-expressing bacterial reporter strains to enable bacterial detection in living animals. To date, all such luciferase-based bacterial reporters are in cell-associated form. Production of luciferase-secreting recombinant bacteria could provide the advantage of reporting CFU from both infection loci themselves and remote sampling (eg. body fluid and plasma). Toward this end, we have genetically manipulated a pathogenic Escherichia coli (E. coli) strain, ATCC25922, to secrete the marine copepod Gaussia princeps luciferase (Gluc), and assessed the use of Gluc as both an in situ and ex situ reporter for bacterial burden in mouse tissue cage infections. The E. coli expressing Gluc demonstrates in vivo imaging of bacteria in a tissue cage model of infection. Furthermore, secreted Gluc activity and bacterial CFUs recovered from tissue cage fluid (TCF) are correlated along 18 days of infection. Importantly, secreted Gluc can also be detected in plasma samples and serve as an ex situ indicator for the established tissue cage infection, once high bacterial burdens are achieved. We have demonstrated that Gluc from marine eukaryotes can be stably expressed and secreted by pathogenic E. coli in vivo to enable a facile tool for longitudinal evaluation of persistent bacterial infection.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Nrf1 and Nrf2 transcription factors regulate androgen receptor transactivation in prostate cancer cells.
Schultz MA, Hagan SS, Datta A, Zhang Y, Freeman ML, Sikka SC, Abdel-Mageed AB, Mondal D
(2014) PLoS One 9: e87204
MeSH Terms: Analysis of Variance, Cell Line, Tumor, Chromatin Immunoprecipitation, DNA Primers, Dihydrotestosterone, Electrophoretic Mobility Shift Assay, Humans, Immunoblotting, Luciferases, Male, NF-E2-Related Factor 2, Nuclear Respiratory Factor 1, Prostatic Neoplasms, Castration-Resistant, Real-Time Polymerase Chain Reaction, Receptors, Androgen, Transcriptional Activation
Show Abstract · Added March 13, 2014
Despite androgen deprivation therapy (ADT), persistent androgen receptor (AR) signaling enables outgrowth of castration resistant prostate cancer (CRPC). In prostate cancer (PCa) cells, ADT may enhance AR activity through induction of oxidative stress. Herein, we investigated the roles of Nrf1 and Nrf2, transcription factors that regulate antioxidant gene expression, on hormone-mediated AR transactivation using a syngeneic in vitro model of androgen dependent (LNCaP) and castration resistant (C4-2B) PCa cells. Dihydrotestosterone (DHT) stimulated transactivation of the androgen response element (ARE) was significantly greater in C4-2B cells than in LNCaP cells. DHT-induced AR transactivation was coupled with higher nuclear translocation of p65-Nrf1 in C4-2B cells, as compared to LNCaP cells. Conversely, DHT stimulation suppressed total Nrf2 levels in C4-2B cells but elevated total Nrf2 levels in LNCaP cells. Interestingly, siRNA mediated silencing of Nrf1 attenuated AR transactivation while p65-Nrf1 overexpression enhanced AR transactivation. Subsequent studies showed that Nrf1 physically interacts with AR and enhances AR's DNA-binding activity, suggesting that the p65-Nrf1 isoform is a potential AR coactivator. In contrast, Nrf2 suppressed AR-mediated transactivation by stimulating the nuclear accumulation of the p120-Nrf1 which suppressed AR transactivation. Quantitative RT-PCR studies further validated the inductive effects of p65-Nrf1 isoform on the androgen regulated genes, PSA and TMPRSS2. Therefore, our findings implicate differential roles of Nrf1 and Nrf2 in regulating AR transactivation in PCa cells. Our findings also indicate that the DHT-stimulated increase in p65-Nrf1 and the simultaneous suppression of both Nrf2 and p120-Nrf1 ultimately facilitates AR transactivation in CRPC cells.
0 Communities
1 Members
0 Resources
16 MeSH Terms