Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 26

Publication Record

Connections

Midlife Consequences of Cumulative Blood Pressure Exposure: Importance of a Lifespan Approach.
Jefferson AL
(2020) Circulation 141: 725-727
MeSH Terms: Adult, Blood Pressure, Blood Pressure Determination, Cognition, Humans, Hypertension, Longevity, Young Adult
Added March 30, 2020
0 Communities
1 Members
0 Resources
8 MeSH Terms
Cognitive Function in Sickle Cell Disease Across Domains, Cerebral Infarct Status, and the Lifespan: A Meta-Analysis.
Prussien KV, Jordan LC, DeBaun MR, Compas BE
(2019) J Pediatr Psychol 44: 948-958
MeSH Terms: Anemia, Sickle Cell, Cerebral Infarction, Cognitive Dysfunction, Humans, Longevity
Show Abstract · Added March 24, 2020
OBJECTIVE - To provide a comprehensive quantitative review of neurocognitive function in sickle cell disease (SCD) across multiple domains, cerebral infarct status, and the lifespan.
METHODS - One hundred and ten studies were identified in PubMed, MedLine, and PsycINFO involving 110 studies of 3,600 participants with SCD and 1,127 sibling or health controls.
RESULTS - Meta-analytic findings indicate significant deficits across all neurocognitive domains, age groups, and infarct status. Significant deficits relative to the normative mean ranged from Hedges' g = -.39 to g = -.63 in preschool children, g = -.83 to g = -1.18 in school-aged children and adolescents, and g = -.46 to g = -.86 in adults. Deficits in full scale IQ (FSIQ), verbal reasoning, perceptual reasoning, and executive function increased from preschool to school-aged samples. However, findings also showed that deficits were smaller in adult samples relative to school-aged samples, likely due to sampling bias in adult studies. Findings across infarct status in sickle cell anemia showed that deficits ranged from g = -.54 to g = -.65 in samples without infarcts, g = -.52 to g = -1.03 in samples with silent cerebral infarct, and g = -1.35 to g = -1.82 in samples with stroke. Deficits in each domain increased in magnitude from no infarct or stroke, to silent cerebral infarct, to overt stroke.
CONCLUSION - Individuals with SCD are at risk for cognitive deficits across domains, infarct status, and the lifespan. More research is necessary to determine unbiased effects for cognitive function in adults with SCD.
© The Author(s) 2019. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
0 Communities
1 Members
0 Resources
5 MeSH Terms
Longevity and sexual maturity vary across species with number of cortical neurons, and humans are no exception.
Herculano-Houzel S
(2019) J Comp Neurol 527: 1689-1705
MeSH Terms: Aging, Animals, Cerebral Cortex, Female, Humans, Longevity, Male, Neurons, Sexual Maturation, Species Specificity
Show Abstract · Added March 30, 2020
Maximal longevity of endotherms has long been considered to increase with decreasing specific metabolic rate, and thus with increasing body mass. Using a dataset of over 700 species, here I show that maximal longevity, age at sexual maturity, and postmaturity longevity across bird and mammalian species instead correlate primarily, and universally, with the number of cortical brain neurons. Correlations with metabolic rate and body mass are entirely explained by clade-specific relationships between these variables and numbers of cortical neurons across species. Importantly, humans reach sexual maturity and subsequently live just as long as expected for their number of cortical neurons, which eliminates the basis for earlier theories of protracted childhood and prolonged post-menopause longevity as derived human characteristics. Longevity might increase together with numbers of cortical neurons through their impact on three main factors: delay of sexual maturity, which postpones the onset of aging; lengthening of the period of viable physiological integration and adaptation, which increases postmaturity longevity; and improved cognitive capabilities that benefit survival of the self and of longer-lived progeny, and are conducive to prolonged learning and cultural transmission through increased generational overlap. Importantly, the findings indicate that theories of aging and neurodegenerative diseases should take absolute time lived besides relative "age" into consideration.
© 2018 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Scavengers of reactive γ-ketoaldehydes extend Caenorhabditis elegans lifespan and healthspan through protein-level interactions with SIR-2.1 and ETS-7.
Nguyen TT, Caito SW, Zackert WE, West JD, Zhu S, Aschner M, Fessel JP, Roberts LJ
(2016) Aging (Albany NY) 8: 1759-80
MeSH Terms: Aging, Animals, Animals, Genetically Modified, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Lipid Peroxidation, Longevity, Proto-Oncogene Proteins c-ets, Sirtuins
Show Abstract · Added September 16, 2016
Isoketals (IsoKs) are highly reactive γ-ketoaldehyde products of lipid peroxidation that covalently adduct lysine side chains in proteins, impairing their function. Using C. elegans as a model organism, we sought to test the hypothesis that IsoKs contribute to molecular aging through adduction and inactivation of specific protein targets, and that this process can be abrogated using salicylamine (SA), a selective IsoK scavenger. Treatment with SA extends adult nematode longevity by nearly 56% and prevents multiple deleterious age-related biochemical and functional changes. Testing of a variety of molecular targets for SA's action revealed the sirtuin SIR-2.1 as the leading candidate. When SA was administered to a SIR-2.1 knockout strain, the effects on lifespan and healthspan extension were abolished. The SIR-2.1-dependent effects of SA were not mediated by large changes in gene expression programs or by significant changes in mitochondrial function. However, expression array analysis did show SA-dependent regulation of the transcription factor ets-7 and associated genes. In ets-7 knockout worms, SA's longevity effects were abolished, similar to sir-2.1 knockouts. However, SA dose-dependently increases ets-7 mRNA levels in non-functional SIR-2.1 mutant, suggesting that both are necessary for SA's complete lifespan and healthspan extension.
0 Communities
2 Members
0 Resources
9 MeSH Terms
Brain in Congenital Heart Disease Across the Lifespan: The Cumulative Burden of Injury.
Marelli A, Miller SP, Marino BS, Jefferson AL, Newburger JW
(2016) Circulation 133: 1951-62
MeSH Terms: Brain, Brain Injuries, Child, Child Development, Cost of Illness, Heart Defects, Congenital, Humans, Longevity, Risk Factors
Show Abstract · Added March 26, 2019
The number of patients surviving with congenital heart disease (CHD) has soared over the last 3 decades. Adults constitute the fastest-growing segment of the CHD population, now outnumbering children. Research to date on the heart-brain intersection in this population has been focused largely on neurodevelopmental outcomes in childhood and adolescence. Mutations in genes that are highly expressed in heart and brain may cause cerebral dysgenesis. Together with altered cerebral perfusion in utero, these factors are associated with abnormalities of brain structure and brain immaturity in a significant portion of neonates with critical CHD even before they undergo cardiac surgery. In infancy and childhood, the brain may be affected by risk factors related to heart disease itself or to its interventional treatments. As children with CHD become adults, they increasingly develop heart failure, atrial fibrillation, hypertension, diabetes mellitus, and coronary disease. These acquired cardiovascular comorbidities can be expected to have effects similar to those in the general population on cerebral blood flow, brain volumes, and dementia. In both children and adults, cardiovascular disease may have adverse effects on achievement, executive function, memory, language, social interactions, and quality of life. Against the backdrop of shifting demographics, risk factors for brain injury in the CHD population are cumulative and synergistic. As neurodevelopmental sequelae in children with CHD evolve to cognitive decline or dementia during adulthood, a growing population of CHD can be expected to require support services. We highlight evidence gaps and future research directions.
© 2016 American Heart Association, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Synaptic roles for phosphomannomutase type 2 in a new Drosophila congenital disorder of glycosylation disease model.
Parkinson WM, Dookwah M, Dear ML, Gatto CL, Aoki K, Tiemeyer M, Broadie K
(2016) Dis Model Mech 9: 513-27
MeSH Terms: Animals, Congenital Disorders of Glycosylation, Disease Models, Animal, Down-Regulation, Drosophila, Drosophila Proteins, Extracellular Matrix, Glycoproteins, Glycosylation, Longevity, Movement, Neuromuscular Junction, Oligosaccharides, Phosphotransferases (Phosphomutases), Polysaccharides, Posture, Presynaptic Terminals, Signal Transduction, Synapses, Synaptic Transmission
Show Abstract · Added March 29, 2017
Congenital disorders of glycosylation (CDGs) constitute a rapidly growing family of human diseases resulting from heritable mutations in genes driving the production and modification of glycoproteins. The resulting symptomatic hypoglycosylation causes multisystemic defects that include severe neurological impairments, revealing a particularly critical requirement for tightly regulated glycosylation in the nervous system. The most common CDG, CDG-Ia (PMM2-CDG), arises from phosphomannomutase type 2 (PMM2) mutations. Here, we report the generation and characterization of the first Drosophila CDG-Ia model. CRISPR-generated pmm2-null Drosophila mutants display severely disrupted glycosylation and early lethality, whereas RNAi-targeted knockdown of neuronal PMM2 results in a strong shift in the abundance of pauci-mannose glycan, progressive incoordination and later lethality, closely paralleling human CDG-Ia symptoms of shortened lifespan, movement impairments and defective neural development. Analyses of the well-characterized Drosophila neuromuscular junction (NMJ) reveal synaptic glycosylation loss accompanied by defects in both structural architecture and functional neurotransmission. NMJ synaptogenesis is driven by intercellular signals that traverse an extracellular synaptomatrix and are co-regulated by glycosylation and matrix metalloproteinases (MMPs). Specifically, trans-synaptic signaling by the Wnt protein Wingless (Wg) depends on the heparan sulfate proteoglycan (HSPG) co-receptor Dally-like protein (Dlp), which is regulated by synaptic MMP activity. Loss of synaptic MMP2, Wg ligand, Dlp co-receptor and downstream trans-synaptic signaling occurs with PMM2 knockdown. Taken together, this Drosophila CDG disease model provides a new avenue for the dissection of cellular and molecular mechanisms underlying neurological impairments and is a means by which to discover and test novel therapeutic treatment strategies.
© 2016. Published by The Company of Biologists Ltd.
1 Communities
1 Members
0 Resources
20 MeSH Terms
Age- and manganese-dependent modulation of dopaminergic phenotypes in a C. elegans DJ-1 genetic model of Parkinson's disease.
Chen P, DeWitt MR, Bornhorst J, Soares FA, Mukhopadhyay S, Bowman AB, Aschner M
(2015) Metallomics 7: 289-98
MeSH Terms: Aging, Aldehyde Oxidoreductases, Animals, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Disease Models, Animal, Dopaminergic Neurons, Forkhead Transcription Factors, Gene Deletion, Green Fluorescent Proteins, Longevity, Manganese, Models, Biological, Models, Genetic, Movement, Parkinson Disease, Phenotype, Signal Transduction, Survival Analysis
Show Abstract · Added February 15, 2016
Parkinson's disease (PD) is the second most common neurodegenerative disease, yet its etiology and pathogenesis are poorly understood. PD is characterized by selective dopaminergic (DAergic) degeneration and progressive hypokinetic motor impairment. Mutations in dj-1 cause autosomal recessive early-onset PD. DJ-1 is thought to protect DAergic neurons via an antioxidant mechanism, but the precise basis of this protection has not yet been resolved. Aging and manganese (Mn) exposure are significant non-genetic risk factors for PD. Caenorhabditis elegans (C. elegans) is an optimal model for PD and aging studies because of its simple nervous system, conserved DAergic machinery, and short 20-day lifespan. Here we tested the hypothesis that C. elegans DJ-1 homologues were protective against Mn-induced DAergic toxicity in an age-dependent manner. We showed that the deletion of C. elegans DJ-1 related (djr) genes, djr-1.2, decreased survival after Mn exposure. djr-1.2, the DJ-1 homologue was expressed in DAergic neurons and its deletion decreased lifespan and dopamine (DA)-dependent dauer movement behavior after Mn exposure. We also tested the role of DAF-16 as a regulator of dj-1.2 interaction with Mn toxicity. Lifespan defects resulting from djr-1.2 deletion could be restored to normal by overexpression of either DJR-1.2 or DAF-16. Furthermore, dauer movement alterations after djr-1.2 deletion were abolished by constitutive activation of DAF-16 through mutation of its inhibitor, DAF-2 insulin receptor. Taken together, our results reveal PD-relevant interactions between aging, the PD environmental risk factor manganese, and homologues of the established PD genetic risk factor DJ-1. Our data demonstrate a novel role for the DJ-1 homologue, djr-1.2, in mitigating Mn-dependent lifespan reduction and DA signaling alterations, involving DAF-2/DAF-16 signaling.
0 Communities
1 Members
0 Resources
19 MeSH Terms
Synergistic effects of GDNF and VEGF on lifespan and disease progression in a familial ALS rat model.
Krakora D, Mulcrone P, Meyer M, Lewis C, Bernau K, Gowing G, Zimprich C, Aebischer P, Svendsen CN, Suzuki M
(2013) Mol Ther 21: 1602-10
MeSH Terms: Amyotrophic Lateral Sclerosis, Animals, Cell Survival, Disease Models, Animal, Disease Progression, Female, Gene Expression, Gene Transfer Techniques, Genetic Therapy, Glial Cell Line-Derived Neurotrophic Factor, Humans, Longevity, Male, Mesenchymal Stem Cell Transplantation, Mesenchymal Stem Cells, Motor Neurons, Muscle, Skeletal, Neuromuscular Junction, Rats, Vascular Endothelial Growth Factor A
Show Abstract · Added January 14, 2014
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons in the brain and spinal cord. We have recently shown that human mesenchymal stem cells (hMSCs) modified to release glial cell line-derived neurotrophic factor (GDNF) decrease disease progression in a rat model of ALS when delivered to skeletal muscle. In the current study, we determined whether or not this effect could be enhanced by delivering GDNF in concert with other trophic factors. hMSC engineered to secrete GDNF (hMSC-GDNF), vascular endothelial growth factor (hMSC-VEGF), insulin-like growth factor-I (hMSC-IGF-I), or brain-derived neurotrophic factor (hMSC-BDNF), were prepared and transplanted bilaterally into three muscle groups. hMSC-GDNF and hMSC-VEGF prolonged survival and slowed the loss of motor function, but hMSC-IGF-I and hMSC-BDNF did not have any effect. We then tested the efficacy of a combined ex vivo delivery of GDNF and VEGF in extending survival and protecting neuromuscular junctions (NMJs) and motor neurons. Interestingly, the combined delivery of these neurotrophic factors showed a strong synergistic effect. These studies further support ex vivo gene therapy approaches for ALS that target skeletal muscle.
0 Communities
1 Members
0 Resources
20 MeSH Terms
The development of memory efficiency and value-directed remembering across the life span: a cross-sectional study of memory and selectivity.
Castel AD, Humphreys KL, Lee SS, Galván A, Balota DA, McCabe DP
(2011) Dev Psychol 47: 1553-64
MeSH Terms: Adolescent, Adult, Age Factors, Aged, Aged, 80 and over, Aging, Attention, Child, Child, Preschool, Choice Behavior, Cross-Sectional Studies, Female, Humans, Life Expectancy, Longevity, Male, Mental Recall, Middle Aged, Neuropsychological Tests, Verbal Learning, Young Adult
Show Abstract · Added March 3, 2020
Although attentional control and memory change considerably across the life span, no research has examined how the ability to strategically remember important information (i.e., value-directed remembering) changes from childhood to old age. The present study examined this in different age groups across the life span (N = 320, 5-96 years old). A selectivity task was used in which participants were asked to study and recall items worth different point values in order to maximize their point score. This procedure allowed for measures of memory quantity/capacity (number of words recalled) and memory efficiency/selectivity (the recall of high-value items relative to low-value items). Age-related differences were found for memory capacity, as young adults recalled more words than the other groups. However, in terms of selectivity, younger and older adults were more selective than adolescents and children. The dissociation between these measures across the life span illustrates important age-related differences in terms of memory capacity and the ability to selectively remember high-value information.
0 Communities
1 Members
0 Resources
MeSH Terms
Intrarenal dopamine deficiency leads to hypertension and decreased longevity in mice.
Zhang MZ, Yao B, Wang S, Fan X, Wu G, Yang H, Yin H, Yang S, Harris RC
(2011) J Clin Invest 121: 2845-54
MeSH Terms: Aldosterone, Animals, Aquaporin 2, Aromatic-L-Amino-Acid Decarboxylases, Cyclooxygenase 2, Dopamine, Hypertension, Kidney, Kidney Tubules, Proximal, Longevity, Mice, Mice, Knockout, Receptors, Drug, Renin, Sodium-Bicarbonate Symporters, Sodium-Hydrogen Exchanger 3, Sodium-Hydrogen Exchangers, Sodium-Potassium-Chloride Symporters, Solute Carrier Family 12, Member 1, Solute Carrier Family 12, Member 3, Symporters
Show Abstract · Added December 10, 2013
In addition to its role as an essential neurotransmitter, dopamine serves important physiologic functions in organs such as the kidney. Although the kidney synthesizes dopamine through the actions of aromatic amino acid decarboxylase (AADC) in the proximal tubule, previous studies have not discriminated between the roles of extrarenal and intrarenal dopamine in the overall regulation of renal function. To address this issue, we generated mice with selective deletion of AADC in the kidney proximal tubules (referred to herein as ptAadc-/- mice), which led to selective decreases in kidney and urinary dopamine. The ptAadc-/- mice exhibited increased expression of nephron sodium transporters, decreased natriuresis and diuresis in response to l-dihydroxyphenylalanine, and decreased medullary COX-2 expression and urinary prostaglandin E2 excretion and developed salt-sensitive hypertension. They had increased renin expression and altered renal Ang II receptor (AT) expression, with increased AT1b and decreased AT2 and Mas expression, associated with increased renal injury in response to Ang II. They also exhibited a substantially shorter life span compared with that of wild-type mice. These results demonstrate the importance of the intrarenal dopaminergic system in salt and water homeostasis and blood pressure control. Decreasing intrarenal dopamine subjects the kidney to unbuffered responses to Ang II and results in the development of hypertension and a dramatic decrease in longevity.
1 Communities
2 Members
0 Resources
21 MeSH Terms