Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 24

Publication Record

Connections

A case of severe acquired hypertriglyceridemia in a 7-year-old girl.
Lilley JS, Linton MF, Kelley JC, Graham TB, Fazio S, Tavori H
(2017) J Clin Lipidol 11: 1480-1484
MeSH Terms: Autoantibodies, Autoimmunity, Child, Female, Heterozygote, Humans, Hyperlipoproteinemia Type I, Lipoprotein Lipase, Mutation, Prednisone, Sjogren's Syndrome, Triglycerides
Show Abstract · Added April 10, 2018
We report a case of severe type I hyperlipoproteinemia caused by autoimmunity against lipoprotein lipase (LPL) in the context of presymptomatic Sjögren's syndrome. A 7-year-old mixed race (Caucasian/African American) girl was admitted to the intensive care unit at Vanderbilt Children's Hospital with acute pancreatitis and shock. She was previously healthy aside from asthma and history of Hashimoto's thyroiditis. Admission triglycerides (TGs) were 2191 mg/dL but returned to normal during the hospital stay and in the absence of food intake. At discharge, she was placed on a low-fat, low-sugar diet. She did not respond to fibrates, prescription fish oil, metformin, or orlistat, and during the following 2 years, she was hospitalized several times with recurrent pancreatitis. Except for a heterozygous mutation in the promoter region of LPL, predicted to have no clinical significance, she had no further mutations in genes known to affect TG metabolism and to cause inherited type I hyperlipoproteinemia, such as APOA5, APOC2, GPIHBP1, or LMF1. When her TG levels normalized after incidental use of prednisone, an autoimmune mechanism was suspected. Immunoblot analyses showed the presence of autoantibodies to LPL in the patient's plasma. Autoantibodies to LPL decreased by 37% while patient was on prednisone, and by 68% as she subsequently transitioned to hydroxychloroquine monotherapy. While on hydroxychloroquine, she underwent a supervised high-fat meal challenge and showed normal ability to metabolize TG. For the past 3 years and 6 months, she has had TG consistently <250 mg/dL, and no symptoms of, or readmissions for, pancreatitis.
Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
12 MeSH Terms
Autoantibodies against GPIHBP1 as a Cause of Hypertriglyceridemia.
Beigneux AP, Miyashita K, Ploug M, Blom DJ, Ai M, Linton MF, Khovidhunkit W, Dufour R, Garg A, McMahon MA, Pullinger CR, Sandoval NP, Hu X, Allan CM, Larsson M, Machida T, Murakami M, Reue K, Tontonoz P, Goldberg IJ, Moulin P, Charrière S, Fong LG, Nakajima K, Young SG
(2017) N Engl J Med 376: 1647-1658
MeSH Terms: Adult, Autoantibodies, Female, Humans, Hyperlipoproteinemia Type I, Immunoassay, Lipolysis, Lipoprotein Lipase, Male, Middle Aged, Protein Binding, Protein Transport, Receptors, Lipoprotein
Show Abstract · Added April 10, 2018
BACKGROUND - A protein that is expressed on capillary endothelial cells, called GPIHBP1 (glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1), binds lipoprotein lipase and shuttles it to its site of action in the capillary lumen. A deficiency in GPIHBP1 prevents lipoprotein lipase from reaching the capillary lumen. Patients with GPIHBP1 deficiency have low plasma levels of lipoprotein lipase, impaired intravascular hydrolysis of triglycerides, and severe hypertriglyceridemia (chylomicronemia). During the characterization of a monoclonal antibody-based immunoassay for GPIHBP1, we encountered two plasma samples (both from patients with chylomicronemia) that contained an interfering substance that made it impossible to measure GPIHBP1. That finding raised the possibility that those samples might contain GPIHBP1 autoantibodies.
METHODS - Using a combination of immunoassays, Western blot analyses, and immunocytochemical studies, we tested the two plasma samples (as well as samples from other patients with chylomicronemia) for the presence of GPIHBP1 autoantibodies. We also tested the ability of GPIHBP1 autoantibodies to block the binding of lipoprotein lipase to GPIHBP1.
RESULTS - We identified GPIHBP1 autoantibodies in six patients with chylomicronemia and found that these autoantibodies blocked the binding of lipoprotein lipase to GPIHBP1. As in patients with GPIHBP1 deficiency, those with GPIHBP1 autoantibodies had low plasma levels of lipoprotein lipase. Three of the six patients had systemic lupus erythematosus. One of these patients who had GPIHBP1 autoantibodies delivered a baby with plasma containing maternal GPIHBP1 autoantibodies; the infant had severe but transient chylomicronemia. Two of the patients with chylomicronemia and GPIHBP1 autoantibodies had a response to treatment with immunosuppressive agents.
CONCLUSIONS - In six patients with chylomicronemia, GPIHBP1 autoantibodies blocked the ability of GPIHBP1 to bind and transport lipoprotein lipase, thereby interfering with lipoprotein lipase-mediated processing of triglyceride-rich lipoproteins and causing severe hypertriglyceridemia. (Funded by the National Heart, Lung, and Blood Institute and the Leducq Foundation.).
0 Communities
1 Members
0 Resources
MeSH Terms
Endocannabinoid signalling modulates susceptibility to traumatic stress exposure.
Bluett RJ, Báldi R, Haymer A, Gaulden AD, Hartley ND, Parrish WP, Baechle J, Marcus DJ, Mardam-Bey R, Shonesy BC, Uddin MJ, Marnett LJ, Mackie K, Colbran RJ, Winder DG, Patel S
(2017) Nat Commun 8: 14782
MeSH Terms: Amygdala, Animals, Anxiety, Arachidonic Acids, Behavior, Animal, Benzodioxoles, Disease Susceptibility, Dronabinol, Endocannabinoids, Excitatory Postsynaptic Potentials, Female, Glutamates, Glycerides, Hippocampus, Lipoprotein Lipase, Male, Mice, Inbred ICR, Mice, Knockout, Phenotype, Piperidines, Resilience, Psychological, Signal Transduction, Stress, Psychological, Synapses
Show Abstract · Added April 7, 2017
Stress is a ubiquitous risk factor for the exacerbation and development of affective disorders including major depression and posttraumatic stress disorder. Understanding the neurobiological mechanisms conferring resilience to the adverse consequences of stress could have broad implications for the treatment and prevention of mood and anxiety disorders. We utilize laboratory mice and their innate inter-individual differences in stress-susceptibility to demonstrate a critical role for the endogenous cannabinoid 2-arachidonoylglycerol (2-AG) in stress-resilience. Specifically, systemic 2-AG augmentation is associated with a stress-resilient phenotype and enhances resilience in previously susceptible mice, while systemic 2-AG depletion or CB1 receptor blockade increases susceptibility in previously resilient mice. Moreover, stress-resilience is associated with increased phasic 2-AG-mediated synaptic suppression at ventral hippocampal-amygdala glutamatergic synapses and amygdala-specific 2-AG depletion impairs successful adaptation to repeated stress. These data indicate amygdala 2-AG signalling mechanisms promote resilience to adverse effects of acute traumatic stress and facilitate adaptation to repeated stress exposure.
0 Communities
4 Members
0 Resources
24 MeSH Terms
Monoclonal antibodies that bind to the Ly6 domain of GPIHBP1 abolish the binding of LPL.
Hu X, Sleeman MW, Miyashita K, Linton MF, Allan CM, He C, Larsson M, Tu Y, Sandoval NP, Jung RS, Mapar A, Machida T, Murakami M, Nakajima K, Ploug M, Fong LG, Young SG, Beigneux AP
(2017) J Lipid Res 58: 208-215
MeSH Terms: Animals, Antibodies, Monoclonal, Binding Sites, Cell Line, Drosophila, Endothelial Cells, Humans, Lipoprotein Lipase, Mice, Receptors, Lipoprotein, Triglycerides
Show Abstract · Added April 10, 2018
GPIHBP1, an endothelial cell protein, binds LPL in the interstitial spaces and shuttles it to its site of action inside blood vessels. For years, studies of human GPIHBP1 have been hampered by an absence of useful antibodies. We reasoned that monoclonal antibodies (mAbs) against human GPIHBP1 would be useful for 1) defining the functional relevance of GPIHBP1's Ly6 and acidic domains to the binding of LPL; 2) ascertaining whether human GPIHBP1 is expressed exclusively in capillary endothelial cells; and 3) testing whether GPIHBP1 is detectable in human plasma. Here, we report the development of a panel of human GPIHBP1-specific mAbs. Two mAbs against GPIHBP1's Ly6 domain, RE3 and RG3, abolished LPL binding, whereas an antibody against the acidic domain, RF4, did not. Also, mAbs RE3 and RG3 bound with reduced affinity to a mutant GPIHBP1 containing an Ly6 domain mutation (W109S) that abolishes LPL binding. Immunohistochemistry studies with the GPIHBP1 mAbs revealed that human GPIHBP1 is expressed only in capillary endothelial cells. Finally, we created an ELISA that detects GPIHBP1 in human plasma. That ELISA should make it possible for clinical lipidologists to determine whether plasma GPIHBP1 levels are a useful biomarker of metabolic or vascular disease.
Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Antipsychotic-like Effects of M4 Positive Allosteric Modulators Are Mediated by CB2 Receptor-Dependent Inhibition of Dopamine Release.
Foster DJ, Wilson JM, Remke DH, Mahmood MS, Uddin MJ, Wess J, Patel S, Marnett LJ, Niswender CM, Jones CK, Xiang Z, Lindsley CW, Rook JM, Conn PJ
(2016) Neuron 91: 1244-1252
MeSH Terms: Allosteric Regulation, Animals, Antipsychotic Agents, Corpus Striatum, Dopamine, Lipoprotein Lipase, Mice, Knockout, Muscarinic Agonists, Oxotremorine, Prepulse Inhibition, Pyridazines, Receptor, Cannabinoid, CB2, Receptor, Muscarinic M4, Thiophenes
Show Abstract · Added April 6, 2017
Muscarinic receptors represent a promising therapeutic target for schizophrenia, but the mechanisms underlying the antipsychotic efficacy of muscarinic modulators are not well understood. Here, we report that activation of M4 receptors on striatal spiny projection neurons results in a novel form of dopaminergic regulation resulting in a sustained depression of striatal dopamine release that is observed more than 30 min after removal of the muscarinic receptor agonist. Furthermore, both the M4-mediated sustained inhibition of dopamine release and the antipsychotic-like efficacy of M4 activators were found to require intact signaling through CB2 cannabinoid receptors. These findings highlight a novel mechanism by which striatal cholinergic and cannabinoid signaling leads to sustained reductions in dopaminergic transmission and concurrent behavioral effects predictive of antipsychotic efficacy.
Copyright © 2016 Elsevier Inc. All rights reserved.
0 Communities
6 Members
0 Resources
14 MeSH Terms
Coding Variation in ANGPTL4, LPL, and SVEP1 and the Risk of Coronary Disease.
Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia Investigators, Stitziel NO, Stirrups KE, Masca NG, Erdmann J, Ferrario PG, König IR, Weeke PE, Webb TR, Auer PL, Schick UM, Lu Y, Zhang H, Dube MP, Goel A, Farrall M, Peloso GM, Won HH, Do R, van Iperen E, Kanoni S, Kruppa J, Mahajan A, Scott RA, Willenberg C, Braund PS, van Capelleveen JC, Doney AS, Donnelly LA, Asselta R, Merlini PA, Duga S, Marziliano N, Denny JC, Shaffer CM, El-Mokhtari NE, Franke A, Gottesman O, Heilmann S, Hengstenberg C, Hoffman P, Holmen OL, Hveem K, Jansson JH, Jöckel KH, Kessler T, Kriebel J, Laugwitz KL, Marouli E, Martinelli N, McCarthy MI, Van Zuydam NR, Meisinger C, Esko T, Mihailov E, Escher SA, Alver M, Moebus S, Morris AD, Müller-Nurasyid M, Nikpay M, Olivieri O, Lemieux Perreault LP, AlQarawi A, Robertson NR, Akinsanya KO, Reilly DF, Vogt TF, Yin W, Asselbergs FW, Kooperberg C, Jackson RD, Stahl E, Strauch K, Varga TV, Waldenberger M, Zeng L, Kraja AT, Liu C, Ehret GB, Newton-Cheh C, Chasman DI, Chowdhury R, Ferrario M, Ford I, Jukema JW, Kee F, Kuulasmaa K, Nordestgaard BG, Perola M, Saleheen D, Sattar N, Surendran P, Tregouet D, Young R, Howson JM, Butterworth AS, Danesh J, Ardissino D, Bottinger EP, Erbel R, Franks PW, Girelli D, Hall AS, Hovingh GK, Kastrati A, Lieb W, Meitinger T, Kraus WE, Shah SH, McPherson R, Orho-Melander M, Melander O, Metspalu A, Palmer CN, Peters A, Rader D, Reilly MP, Loos RJ, Reiner AP, Roden DM, Tardif JC, Thompson JR, Wareham NJ, Watkins H, Willer CJ, Kathiresan S, Deloukas P, Samani NJ, Schunkert H
(2016) N Engl J Med 374: 1134-44
MeSH Terms: Aged, Angiopoietin-like 4 Protein, Angiopoietins, Cell Adhesion Molecules, Coronary Artery Disease, Female, Genotyping Techniques, Humans, Lipoprotein Lipase, Male, Middle Aged, Mutation, Mutation, Missense, Risk Factors, Sequence Analysis, DNA, Triglycerides
Show Abstract · Added March 14, 2018
BACKGROUND - The discovery of low-frequency coding variants affecting the risk of coronary artery disease has facilitated the identification of therapeutic targets.
METHODS - Through DNA genotyping, we tested 54,003 coding-sequence variants covering 13,715 human genes in up to 72,868 patients with coronary artery disease and 120,770 controls who did not have coronary artery disease. Through DNA sequencing, we studied the effects of loss-of-function mutations in selected genes.
RESULTS - We confirmed previously observed significant associations between coronary artery disease and low-frequency missense variants in the genes LPA and PCSK9. We also found significant associations between coronary artery disease and low-frequency missense variants in the genes SVEP1 (p.D2702G; minor-allele frequency, 3.60%; odds ratio for disease, 1.14; P=4.2×10(-10)) and ANGPTL4 (p.E40K; minor-allele frequency, 2.01%; odds ratio, 0.86; P=4.0×10(-8)), which encodes angiopoietin-like 4. Through sequencing of ANGPTL4, we identified 9 carriers of loss-of-function mutations among 6924 patients with myocardial infarction, as compared with 19 carriers among 6834 controls (odds ratio, 0.47; P=0.04); carriers of ANGPTL4 loss-of-function alleles had triglyceride levels that were 35% lower than the levels among persons who did not carry a loss-of-function allele (P=0.003). ANGPTL4 inhibits lipoprotein lipase; we therefore searched for mutations in LPL and identified a loss-of-function variant that was associated with an increased risk of coronary artery disease (p.D36N; minor-allele frequency, 1.9%; odds ratio, 1.13; P=2.0×10(-4)) and a gain-of-function variant that was associated with protection from coronary artery disease (p.S447*; minor-allele frequency, 9.9%; odds ratio, 0.94; P=2.5×10(-7)).
CONCLUSIONS - We found that carriers of loss-of-function mutations in ANGPTL4 had triglyceride levels that were lower than those among noncarriers; these mutations were also associated with protection from coronary artery disease. (Funded by the National Institutes of Health and others.).
0 Communities
2 Members
0 Resources
16 MeSH Terms
CaMKII regulates diacylglycerol lipase-α and striatal endocannabinoid signaling.
Shonesy BC, Wang X, Rose KL, Ramikie TS, Cavener VS, Rentz T, Baucum AJ, Jalan-Sakrikar N, Mackie K, Winder DG, Patel S, Colbran RJ
(2013) Nat Neurosci 16: 456-63
MeSH Terms: Animals, Arachidonic Acids, Benzodioxoles, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Corpus Striatum, Endocannabinoids, Gene Knockdown Techniques, Glycerides, HEK293 Cells, Humans, Lipoprotein Lipase, Male, Mice, Mice, Inbred C57BL, Mice, Transgenic, Piperidines, Signal Transduction
Show Abstract · Added July 2, 2013
The endocannabinoid 2-arachidonoylglycerol (2-AG) mediates activity-dependent depression of excitatory neurotransmission at central synapses, but the molecular regulation of 2-AG synthesis is not well understood. Here we identify a functional interaction between the 2-AG synthetic enzyme diacylglycerol lipase-α (DGLα) and calcium/calmodulin dependent protein kinase II (CaMKII). Activated CaMKII interacted with the C-terminal domain of DGLα, phosphorylated two serine residues and inhibited DGLα activity. Consistent with an inhibitory role for CaMKII in 2-AG synthesis, in vivo genetic inhibition of CaMKII increased striatal DGL activity and basal levels of 2-AG, and CaMKII inhibition augmented short-term retrograde endocannabinoid signaling at striatal glutamatergic synapses. Lastly, blockade of 2-AG breakdown using concentrations of JZL-184 that have no effect in wild-type mice produced a hypolocomotor response in mice with reduced CaMKII activity. These findings provide mechanistic insights into the molecular regulation of striatal endocannabinoid signaling with implications for physiological control of motor function.
0 Communities
5 Members
0 Resources
17 MeSH Terms
Diet-dependent modulation of hippocampal expression of endocannabinoid signaling-related proteins in cannabinoid antagonist-treated obese rats.
Rivera P, Luque-Rojas MJ, Pastor A, Blanco E, Pavón FJ, Serrano A, Crespillo A, Vida M, Grondona JM, Cifuentes M, Bermúdez-Silva FJ, de la Torre R, de Fonseca FR, Suárez J
(2013) Eur J Neurosci 37: 105-17
MeSH Terms: Amidohydrolases, Animals, Arachidonic Acids, Cannabinoid Receptor Agonists, Cannabinoid Receptor Antagonists, Diet, High-Fat, Dietary Carbohydrates, Dietary Fats, Endocannabinoids, Hippocampus, Lipoprotein Lipase, Male, Monoacylglycerol Lipases, Obesity, Phospholipase D, Piperidines, Polyunsaturated Alkamides, Pyrazoles, Rats, Rats, Wistar, Receptor, Cannabinoid, CB1, Weight Gain
Show Abstract · Added April 10, 2014
Diet-induced obesity produces changes in endocannabinoid signaling (ECS), influencing the regulation of energy homeostasis. Recently, we demonstrated that, in high-fat-diet-fed rats, blockade of CB1 receptor by AM251 not only reduced body weight but also increased adult neurogenesis in the hippocampus, suggesting an influence of diet on hippocampal cannabinoid function. To further explore the role of hippocampal ECS in high-fat-diet-induced obesity, we investigated whether the immunohistochemical expression of the enzymes that produce (diacylglycerol lipase alpha and N-acyl phosphatidylethanolamine phospholipase D) and degrade (monoacylglycerol lipase and fatty acid amino hydrolase) endocannabinoids may be altered in the hippocampus of AM251 (3 mg/kg)-treated rats fed three different diets: standard diet (normal chow), high-carbohydrate diet (70% carbohydrate) and high-fat diet (60% fat). Results indicated that AM251 reduced caloric intake and body weight gain, and induced a modulation of the expression of ECS-related proteins in the hippocampus of animals exposed to hypercaloric diets. These effects were differentially restricted to either the 2-arachinodoyl glycerol or anandamide signaling pathways, in a diet-dependent manner. AM251-treated rats fed the high-carbohydrate diet showed a reduction of the diacylglycerol lipase alpha : monoacylglycerol lipase ratio, whereas AM251-treated rats fed the high-fat diet showed a decrease of the N-acyl phosphatidylethanolamine phospholipase D : fatty acid amino hydrolase ratio. These results are consistent with the reduced levels of hippocampal endocannabinoids found after food restriction. Regarding the CB1 expression, AM251 induced specific changes focused in the CA1 stratum pyramidale of high-fat-diet-fed rats. These findings indicated that the cannabinoid antagonist AM251 modulates ECS-related proteins in the rat hippocampus in a diet-specific manner. Overall, these results suggest that the hippocampal ECS participates in the physiological adaptations to different caloric diets.
© 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
0 Communities
0 Members
1 Resources
22 MeSH Terms
EGF receptor (ERBB1) abundance in adipose tissue is reduced in insulin-resistant and type 2 diabetic women.
Rogers C, Moukdar F, McGee MA, Davis B, Buehrer BM, Daniel KW, Collins S, Barakat H, Robidoux J
(2012) J Clin Endocrinol Metab 97: E329-40
MeSH Terms: Adipocytes, Adipose Tissue, Adult, Body Mass Index, Cells, Cultured, Cross-Sectional Studies, Diabetes Mellitus, Type 2, ErbB Receptors, Fatty Acid-Binding Proteins, Female, Humans, Insulin, Insulin Resistance, Lipoprotein Lipase, Middle Aged, PPAR gamma, Phosphorylation
Show Abstract · Added July 22, 2020
CONTEXT - Indications of adipose tissue dysfunction correlate with systemic insulin resistance and type 2 diabetes. It has been suggested that a defect in adipose tissue turnover may be involved in the development of these disorders. Whether this dysfunction causes or exacerbates systemic insulin resistance is not fully understood. OBJECTIVES, PARTICIPANTS, AND MEASURES: We tested whether the expression of members of the mitogenic ErbB family was reduced in adipose tissue of insulin-resistant individuals and whether ErbB1 and ErbB2 were involved in adipogenesis. Thirty-two women covering a wide range of body mass index values and insulin sensitivity participated in the cross-sectional portion of this study. We also studied preadipocytes isolated from 12 insulin-sensitive individuals to evaluate the impact of ErbB1 or ErbB2 inhibition on adipogenesis in vitro. For this purpose, we measured phospho-ErbB1 and phospho-ErbB2 levels using ELISA and the expression of peroxisome proliferator-activated receptor γ (PPARγ) and PPARγ-regulated genes by real-time PCR.
RESULTS - Among the ErbB family members, only ErbB1 expression was correlated with insulin sensitivity. Additionally, ErbB1 levels correlated positively with PPARγ and several PPARγ-regulated genes including acyl-coenzyme A synthetase long-chain family member 1 (ACSL1), adiponectin, adipose tissue triacylglycerol lipase (ATGL), diacylglycerol acyl transferase 1 (DGAT1), glycerol-3-phosphate dehydrogenase 1 (GPD1), and lipoprotein lipase (LPL), but negatively with CD36 and fatty acid-binding protein 4 (FABP4). In preadipocyte culture, ErbB1, but not ErbB2, inhibition was associated with a reduction in the expression of all the above-mentioned genes.
CONCLUSIONS - These findings demonstrate a key role for ErbB1 in adipogenesis and suggest that lower ErbB1 protein abundance may lead to adipose tissue dysfunction.
0 Communities
1 Members
0 Resources
MeSH Terms
Lipoprotein lipase S447X variant associated with VLDL, LDL and HDL diameter clustering in the MetS.
Wood AC, Glasser S, Garvey WT, Kabagambe EK, Borecki IB, Tiwari HK, Tsai MY, Hopkins PN, Ordovas JM, Arnett DK
(2011) Lipids Health Dis 10: 143
MeSH Terms: Adult, Aged, Amino Acid Substitution, Cluster Analysis, Female, Gene Frequency, Genetic Association Studies, Genetic Predisposition to Disease, Humans, Insulin Resistance, Lipoprotein Lipase, Lipoproteins, HDL, Lipoproteins, LDL, Lipoproteins, VLDL, Male, Metabolic Syndrome, Middle Aged, Particle Size, Pedigree, Polymorphism, Genetic, Polymorphism, Single Nucleotide, United States
Show Abstract · Added April 23, 2015
BACKGROUND - Previous analysis clustered 1,238 individuals from the general population Genetics of Lipid Lowering Drugs Network (GOLDN) study by the size of their fasting very low-density, low-density and high-density lipoproteins (VLDL, LDL, HDL) using latent class analysis. From two of the eight identified groups (N = 251), ~75% of individuals met Adult Treatment Panel III criteria for the metabolic syndrome (MetS). Both showed small LDL diameter (mean = 19.9 nm); however, group 1 (N = 200) had medium VLDL diameter (mean = 53.1 nm) while group 2 had very large VLDL diameter (mean = 65.74 nm). Group 2 additionally showed significantly more insulin resistance (IR), and accompanying higher waist circumference and fasting glucose and triglycerides (all P < .01). Since lipoprotein lipase hydrolyzes triglyceride in the VLDL-LDL cascade, we examined whether these two patterns of lipoprotein diameter were associated with differences across two lipoprotein lipase (LPL) gene variants: D9N (rs1801177) and S447X (rs328).
FINDINGS - Mixed linear models that controlled for age, sex, center of data collection, and family pedigree revealed no differences between the two groups for the D9N polymorphism (P = .36). However, group 2 contained significantly more carriers (25%) of the 447X variant than group 1 (14%; P = .04).
CONCLUSIONS - This was the first study this kind to show an association between LPL and large VLDL particle size within the MetS, a pattern associated with higher IR. Future work should extend this to larger samples to confirm these findings, and examine the long term outcomes of those with this lipoprotein diameter pattern.
0 Communities
1 Members
0 Resources
22 MeSH Terms