Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 202

Publication Record


Sign Inversion in Photopharmacology: Incorporation of Cyclic Azobenzenes in Photoswitchable Potassium Channel Blockers and Openers.
Trads JB, Hüll K, Matsuura BS, Laprell L, Fehrentz T, Görldt N, Kozek KA, Weaver CD, Klöcker N, Barber DM, Trauner D
(2019) Angew Chem Int Ed Engl 58: 15421-15428
MeSH Terms: Action Potentials, Azo Compounds, Cyclization, Drug Design, G Protein-Coupled Inwardly-Rectifying Potassium Channels, HEK293 Cells, Humans, Isomerism, Lidocaine, Light, Patch-Clamp Techniques, Potassium Channel Blockers, Thermodynamics
Show Abstract · Added March 27, 2020
Photopharmacology relies on ligands that change their pharmacodynamics upon photoisomerization. Many of these ligands are azobenzenes that are thermodynamically more stable in their elongated trans-configuration. Often, they are biologically active in this form and lose activity upon irradiation and photoisomerization to their cis-isomer. Recently, cyclic azobenzenes, so-called diazocines, have emerged, which are thermodynamically more stable in their bent cis-form. Incorporation of these switches into a variety of photopharmaceuticals could convert dark-active ligands into dark-inactive ligands, which is preferred in most biological applications. This "pharmacological sign-inversion" is demonstrated for a photochromic blocker of voltage-gated potassium channels, termed CAL, and a photochromic opener of G protein-coupled inwardly rectifying potassium (GIRK) channels, termed CLOGO.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Multi-scale, numerical modeling of spatio-temporal signaling in cone phototransduction.
Klaus C, Caruso G, Gurevich VV, DiBenedetto E
(2019) PLoS One 14: e0219848
MeSH Terms: Animals, Finite Element Analysis, Light Signal Transduction, Models, Theoretical, Retinal Cone Photoreceptor Cells, Spatio-Temporal Analysis
Show Abstract · Added March 18, 2020
Mammals have two types of photoreceptors, rods and cones. While rods are exceptionally sensitive and mediate vision at very low illumination levels, cones operate in daylight and are responsible for the bulk of visual perception in most diurnal animals, including humans. Yet the mechanisms of phototransduction in cones is understudied, largely due to unavailability of pure cone outer segment (COS) preparations. Here we present a novel mathematical model of cone phototransduction that explicitly takes into account complex cone geometry and its multiple physical scales, faithfully reproduces features of the cone response, and is orders of magnitude more efficient than the standard 3D diffusion model. This is accomplished through the mathematical techniques of homogenization and concentrated capacity. The homogenized model is then computationally implemented by finite element method. This homogenized model permits one to analyze the effects of COS geometry on visual transduction and lends itself to performing large numbers of numerical trials, as required for parameter analysis and the stochasticity of rod and cone signal transduction. Agreement between the nonhomogenized, (i.e., standard 3D), and homogenized diffusion models is reported along with their simulation times and memory costs. Virtual expression of rod biochemistry on cone morphology is also presented for understanding some of the characteristic differences between rods and cones. These simulations evidence that 3D cone morphology and ion channel localization contribute to biphasic flash response, i.e undershoot. The 3D nonhomogenized and homogenized models are contrasted with more traditional and coarser well-stirred and 1D longitudinal diffusion models. The latter are single-scale and do not explicitly account for the multi-scale geometry of the COS, unlike the 3D homogenized model. We show that simpler models exaggerate the magnitude of the current suppression, yield accelerated time to peak, and do not predict the local concentration of cGMP at the ionic channels.
0 Communities
1 Members
0 Resources
MeSH Terms
Generation of MLC-2v-tdTomato knock-in reporter mouse line.
Zhang Z, Nam YJ
(2018) Genesis 56: e23256
MeSH Terms: Animals, Gene Knock-In Techniques, Genes, Reporter, Lycopersicon esculentum, Mice, Mice, Inbred C57BL, Mice, Inbred Strains, Mice, Transgenic, Myosin Light Chains
Show Abstract · Added April 2, 2019
MLC-2v is a myosin light chain regulatory protein which is specifically expressed in ventricular cardiomyocytes and slow twitch skeletal muscle cells. MLC-2v plays critical roles in ventricular maturation during heart development. Mice lacking MLC-2v are embryonic lethal due to heart failure associated with abnormal myofibrillar organization of ventricular cardiomyocytes. To study the development of ventricular cardiac muscle and slow twitch skeletal muscle, we generated a new MLC-2v reporter mouse line by knocking-in a tdTomato reporter cassette into 3' UTR of the MLC-2v gene without disrupting the endogenous gene. Our results demonstrated specific MLC-2v-tdTomato knock-in reporter expression in ventricular cardiomyocytes and slow twitch muscle during myogenesis, precisely recapitulating the spatiotemporal expression pattern of endogenous MLC-2v. No tdTomato expression was observed in the atria, fast twitch muscle or other organs throughout development into adulthood. Isolated neonatal and adult ventricular cardiomyocytes uniformly express tdTomato. Taken together, MLC-2v-tdTomato knock-in reporter mouse model described in this article will serve as a valuable tool to study cardiac chamber and skeletal muscle specification during development and regeneration by overcoming the pitfalls of transgenic strategies.
© 2018 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Dorsolateral Striatum Engagement Interferes with Early Discrimination Learning.
Bergstrom HC, Lipkin AM, Lieberman AG, Pinard CR, Gunduz-Cinar O, Brockway ET, Taylor WW, Nonaka M, Bukalo O, Wills TA, Rubio FJ, Li X, Pickens CL, Winder DG, Holmes A
(2018) Cell Rep 23: 2264-2272
MeSH Terms: Adaptation, Physiological, Animals, Choice Behavior, Corpus Striatum, Cytoskeletal Proteins, Discrimination Learning, Light, Male, Mice, Inbred C57BL, Nerve Tissue Proteins
Show Abstract · Added March 26, 2019
In current models, learning the relationship between environmental stimuli and the outcomes of actions involves both stimulus-driven and goal-directed systems, mediated in part by the DLS and DMS, respectively. However, though these models emphasize the importance of the DLS in governing actions after extensive experience has accumulated, there is growing evidence of DLS engagement from the onset of training. Here, we used in vivo photosilencing to reveal that DLS recruitment interferes with early touchscreen discrimination learning. We also show that the direct output pathway of the DLS is preferentially recruited and causally involved in early learning and find that silencing the normal contribution of the DLS produces plasticity-related alterations in a PL-DMS circuit. These data provide further evidence suggesting that the DLS is recruited in the construction of stimulus-elicited actions that ultimately automate behavior and liberate cognitive resources for other demands, but with a cost to performance at the outset of learning.
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Oxidative stress, caspase-3 activation and cleavage of ROCK-1 play an essential role in MeHg-induced cell death in primary astroglial cells.
Dos Santos AA, López-Granero C, Farina M, Rocha JBT, Bowman AB, Aschner M
(2018) Food Chem Toxicol 113: 328-336
MeSH Terms: Animals, Astrocytes, Caspase 3, Caspase 9, Cell Death, Cells, Cultured, Enzyme Activation, Lim Kinases, Methylmercury Compounds, Mice, Inbred C57BL, Myosin-Light-Chain Phosphatase, Oxidative Stress, Phosphorylation, Proteolysis, rho-Associated Kinases
Show Abstract · Added April 11, 2018
Methylmercury is a toxic environmental contaminant that elicits significant toxicity in humans. The central nervous system is the primary target of toxicity, and is particularly vulnerable during development. Rho-associated protein kinase 1 (ROCK-1) is a major downstream effector of the small GTPase RhoA and a direct substrate of caspase-3. The activation of ROCK-1 is necessary for membrane blebbing during apoptosis. In this work, we examined whether MeHg could affect the RhoA/ROCK-1 signaling pathway in primary cultures of mouse astrocytes. Exposure of cells with 10 μM MeHg decreased cellular viability after 24 h of incubation. This reduction in viability was preceded by a significant increase in intracellular and mitochondrial reactive oxygen species levels, as well as a reduced NAD/NADH ratio. MeHg also induced an increase in mitochondrial-dependent caspase-9 and caspase-3, while the levels of RhoA protein expression were reduced or unchanged. We further found that MeHg induced ROCK-1 cleavage/activation and promoted LIMK1 and MYPT1 phosphorylation, both of which are the best characterized ROCK-1 downstream targets. Inhibiting ROCK-1 and caspases activation attenuated the MeHg-induced cell death. Collectively, these findings are the first to show that astrocytes exposed to MeHg showed increased cleavage/activation of ROCK-1, which was independent of the small GTPase RhoA.
Copyright © 2018. Published by Elsevier Ltd.
0 Communities
1 Members
0 Resources
15 MeSH Terms
A Missense Variant in PLEC Increases Risk of Atrial Fibrillation.
Thorolfsdottir RB, Sveinbjornsson G, Sulem P, Helgadottir A, Gretarsdottir S, Benonisdottir S, Magnusdottir A, Davidsson OB, Rajamani S, Roden DM, Darbar D, Pedersen TR, Sabatine MS, Jonsdottir I, Arnar DO, Thorsteinsdottir U, Gudbjartsson DF, Holm H, Stefansson K
(2017) J Am Coll Cardiol 70: 2157-2168
MeSH Terms: Atrial Fibrillation, Electrocardiography, Genome-Wide Association Study, Genomic Structural Variation, Humans, Mutation, Missense, Myosin Light Chains, Plectin, Risk, Sarcomeres
Show Abstract · Added March 24, 2020
BACKGROUND - Genome-wide association studies (GWAS) have yielded variants at >30 loci that associate with atrial fibrillation (AF), including rare coding mutations in the sarcomere genes MYH6 and MYL4.
OBJECTIVES - The aim of this study was to search for novel AF associations and in doing so gain insights into the mechanisms whereby variants affect AF risk, using electrocardiogram (ECG) measurements.
METHODS - The authors performed a GWAS of 14,255 AF cases and 374,939 controls, using whole-genome sequence data from the Icelandic population, and tested novel signals in 2,002 non-Icelandic cases and 12,324 controls. They then tested the AF variants for effect on cardiac electrical function by using measurements in 289,297 ECGs from 62,974 individuals.
RESULTS - The authors discovered 2 novel AF variants, the intergenic variant rs72700114, between the genes LINC01142 and METTL11B (risk allele frequency = 8.1%; odds ratio [OR]: 1.26; p = 3.1 × 10), and the missense variant p.Gly4098Ser in PLEC (frequency = 1.2%; OR: 1.55; p = 8.0 × 10), encoding plectin, a cytoskeletal cross-linking protein that contributes to integrity of cardiac tissue. The authors also confirmed 29 reported variants. p.Gly4098Ser in PLEC significantly affects various ECG measurements in the absence of AF. Other AF variants have diverse effects on the conduction system, ranging from none to extensive.
CONCLUSIONS - The discovery of a missense variant in PLEC affecting AF combined with recent discoveries of variants in the sarcomere genes MYH6 and MYL4 points to an important role of myocardial structure in the pathogenesis of the disease. The diverse associations between AF variants and ECG measurements suggest fundamentally different categories of mechanisms contributing to the development of AF.
Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
MeSH Terms
Dodecyl-β-melibioside Detergent Micelles as a Medium for Membrane Proteins.
Hutchison JM, Lu Z, Li GC, Travis B, Mittal R, Deatherage CL, Sanders CR
(2017) Biochemistry 56: 5481-5484
MeSH Terms: Amyloid beta-Protein Precursor, Detergents, Diacylglycerol Kinase, Disaccharides, Dynamic Light Scattering, Enzyme Stability, Escherichia coli Proteins, Glucosides, Glycolipids, Hot Temperature, Humans, Micelles, Myelin Proteins, Nuclear Magnetic Resonance, Biomolecular, Particle Size, Peptide Fragments, Protein Interaction Domains and Motifs, Protein Stability, Receptor, Notch1
Show Abstract · Added November 21, 2018
There remains a need for new non-ionic detergents that are suitable for use in biochemical and biophysical studies of membrane proteins. Here we explore the properties of n-dodecyl-β-melibioside (β-DDMB) micelles as a medium for membrane proteins. Melibiose is d-galactose-α(1→6)-d-glucose. Light scattering showed the β-DDMB micelle to be roughly 30 kDa smaller than micelles formed by the commonly used n-dodecyl-β-maltoside (β-DDM). β-DDMB stabilized diacylglycerol kinase (DAGK) against thermal inactivation. Moreover, activity assays conducted using aliquots of DAGK purified into β-DDMB yielded activities that were 40% higher than those of DAGK purified into β-DDM. β-DDMB yielded similar or better TROSY-HSQC NMR spectra for two single-pass membrane proteins and the tetraspan membrane protein peripheral myelin protein 22. β-DDMB appears be a useful addition to the toolbox of non-ionic detergents available for membrane protein research.
0 Communities
1 Members
0 Resources
MeSH Terms
Peptide probes detect misfolded transthyretin oligomers in plasma of hereditary amyloidosis patients.
Schonhoft JD, Monteiro C, Plate L, Eisele YS, Kelly JM, Boland D, Parker CG, Cravatt BF, Teruya S, Helmke S, Maurer M, Berk J, Sekijima Y, Novais M, Coelho T, Powers ET, Kelly JW
(2017) Sci Transl Med 9:
MeSH Terms: Amyloidosis, Familial, Benzoxazoles, Case-Control Studies, Cross-Linking Reagents, Diazomethane, Genotype, Humans, Ions, Light, Molecular Probes, Molecular Weight, Peptides, Prealbumin, Protein Folding, Protein Multimerization, Protein Structure, Secondary, Proteolysis, Proteomics, Solubility
Show Abstract · Added March 3, 2020
Increasing evidence supports the hypothesis that soluble misfolded protein assemblies contribute to the degeneration of postmitotic tissue in amyloid diseases. However, there is a dearth of reliable nonantibody-based probes for selectively detecting oligomeric aggregate structures circulating in plasma or deposited in tissues, making it difficult to scrutinize this hypothesis in patients. Hence, understanding the structure-proteotoxicity relationships driving amyloid diseases remains challenging, hampering the development of early diagnostic and novel treatment strategies. We report peptide-based probes that selectively label misfolded transthyretin (TTR) oligomers circulating in the plasma of TTR hereditary amyloidosis patients exhibiting a predominant neuropathic phenotype. These probes revealed that there are much fewer misfolded TTR oligomers in healthy controls, in asymptomatic carriers of mutations linked to amyloid polyneuropathy, and in patients with TTR-associated cardiomyopathies. The absence of misfolded TTR oligomers in the plasma of cardiomyopathy patients suggests that the tissue tropism observed in the TTR amyloidoses is structure-based. Misfolded oligomers decrease in TTR amyloid polyneuropathy patients treated with disease-modifying therapies (tafamidis or liver transplant-mediated gene therapy). In a subset of TTR amyloid polyneuropathy patients, the probes also detected a circulating TTR fragment that disappeared after tafamidis treatment. Proteomic analysis of the isolated TTR oligomers revealed a specific patient-associated signature composed of proteins that likely associate with the circulating TTR oligomers. Quantification of plasma oligomer concentrations using peptide probes could become an early diagnostic strategy, a response-to-therapy biomarker, and a useful tool for understanding structure-proteotoxicity relationships in the TTR amyloidoses.
Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
0 Communities
1 Members
0 Resources
MeSH Terms
Photonic crystal microring resonator for label-free biosensing.
Lo SM, Hu S, Gaur G, Kostoulas Y, Weiss SM, Fauchet PM
(2017) Opt Express 25: 7046-7054
MeSH Terms: Biosensing Techniques, Light, Optics and Photonics, Photons
Show Abstract · Added May 5, 2017
A label-free optical biosensor based on a one-dimensional photonic crystal microring resonator with enhanced light-matter interaction is demonstrated. More than a 2-fold improvement in volumetric and surface sensing sensitivity is achieved compared to conventional microring sensors. The experimental bulk detection sensitivity is ~248nm/RIU and label-free detection of DNA and proteins is reported at the nanomolar scale. With a minimum feature size greater than 100nm, the photonic crystal microring resonator biosensor can be fabricated with the same standard lithographic techniques used to mass fabricate conventional microring resonators.
0 Communities
1 Members
0 Resources
4 MeSH Terms
Corneal haze phenotype in Aldh3a1-null mice: In vivo confocal microscopy and tissue imaging mass spectrometry.
Chen Y, Jester JV, Anderson DM, Marchitti SA, Schey KL, Thompson DC, Vasiliou V
(2017) Chem Biol Interact 276: 9-14
MeSH Terms: Aldehyde Dehydrogenase, Animals, Cornea, Corneal Diseases, Corneal Stroma, Diazepam Binding Inhibitor, Disease Models, Animal, Dynamic Light Scattering, Epithelium, Epithelium, Corneal, Histones, Lens, Crystalline, Lipids, Mice, Mice, Inbred C57BL, Mice, Knockout, Microscopy, Confocal, Phenotype, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Show Abstract · Added May 6, 2017
ALDH3A1 is a corneal crystallin that protects ocular tissues from ultraviolet radiation through catalytic and non-catalytic functions. In addition, ALDH3A1 plays a functional role in corneal epithelial homeostasis by simultaneously modulating proliferation and differentiation. We have previously shown that Aldh3a1 knockout mice in a C57B6/129sV mixed genetic background develop lens cataracts. In the current study, we evaluated the corneal phenotype of Aldh3a1 knockout mice bred into a C57B/6J congenic background (KO). In vivo confocal microscopy examination of KO and wild-type (WT) corneas revealed KO mice to exhibit corneal haze, manifesting marked light scattering from corneal stroma. This corneal phenotype was further characterized by Imaging Mass Spectrometry (IMS) with spatial resolution that revealed a trilayer structure based on differential lipid localization. In these preliminary studies, no differences were observed in lipid profiles from KO relative to WT mice; however, changes in protein profiles of acyl-CoA binding protein (m/z 9966) and histone H4.4 (m/z 11308) were found to be increased in the corneal epithelial layer of KO mice. This is the first study to use IMS to characterize endogenous proteins and lipids in corneal tissue and to molecularly explore the corneal haze phenotype. Taken together, the current study presents the first genetic animal model of cellular-induced corneal haze due to the loss of a corneal crystallin, and strongly supports the notion that ALDH3A1 is critical to cellular transparency. Finally, IMS represents a valuable new approach to reveal molecular changes underlying corneal disease.
Copyright © 2016. Published by Elsevier B.V.
0 Communities
1 Members
0 Resources
19 MeSH Terms