Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 64

Publication Record

Connections

Targeted Imaging of VCAM-1 mRNA in a Mouse Model of Laser-Induced Choroidal Neovascularization Using Antisense Hairpin-DNA-Functionalized Gold-Nanoparticles.
Uddin MI, Kilburn TC, Yang R, McCollum GW, Wright DW, Penn JS
(2018) Mol Pharm 15: 5514-5520
MeSH Terms: Animals, Biomarkers, Choroid, Choroidal Neovascularization, Disease Models, Animal, Fluorescent Dyes, Gold, Humans, Intravital Microscopy, Lasers, Male, Metal Nanoparticles, Mice, Mice, Inbred C57BL, Molecular Imaging, Molecular Probes, Oligodeoxyribonucleotides, Antisense, Optical Imaging, RNA, Messenger, Vascular Cell Adhesion Molecule-1, Wet Macular Degeneration
Show Abstract · Added April 10, 2019
Mouse laser-induced choroidal neovascularization (mouse LCNV) recapitulates the "wet" form of human age-related macular degeneration (AMD). Vascular cell adhesion molecule-1 (VCAM-1) is a known inflammatory biomarker, and it increases in the choroidal neovascular tissues characteristic of this experimental model. We have designed and constructed gold nanoparticles (AuNPs) functionalized with hairpin-DNA that incorporates an antisense sequence complementary to VCAM-1 mRNA (AS-VCAM-1 hAuNPs) and tested them as optical imaging probes. The 3' end of the hairpin is coupled to a near-infrared fluorophore that is quenched by the AuNP surface via Förster resonance energy transfer (FRET). Hybridization of the antisense sequence to VCAM-1 mRNA displaces the fluorophore away from the AuNP surface, inducing fluorescent activity. In vitro testing showed that hAuNPs hybridize to an exogenous complementary oligonucleotide within a pH range of 4.5-7.4, and that they are stable at reduced pH. LCNV mice received tail-vein injections of AS-VCAM-1 hAuNPs. Hyperspectral imaging revealed the delivery of AS-VCAM-1 hAuNPs to excised choroidal tissues. Fluorescent images of CNV lesions were obtained, presumably in response to the hybridization of AS-hAuNPs to LCNV-induced VCAM-1 mRNA. This is the first demonstration of systemic delivery of hAuNPs to ocular tissues to facilitate mRNA imaging of any target.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Multiple Mechanisms Drive Calcium Signal Dynamics around Laser-Induced Epithelial Wounds.
Shannon EK, Stevens A, Edrington W, Zhao Y, Jayasinghe AK, Page-McCaw A, Hutson MS
(2017) Biophys J 113: 1623-1635
MeSH Terms: Animals, Animals, Genetically Modified, Calcium, Calcium Signaling, Cell Membrane, Cytosol, Drosophila, Epithelial Cells, Lasers, Microscopy, Confocal, Voltage-Sensitive Dye Imaging, Wings, Animal, Wound Healing
Show Abstract · Added March 20, 2018
Epithelial wound healing is an evolutionarily conserved process that requires coordination across a field of cells. Studies in many organisms have shown that cytosolic calcium levels rise within a field of cells around the wound and spread to neighboring cells, within seconds of wounding. Although calcium is a known potent second messenger and master regulator of wound-healing programs, it is unknown what initiates the rise of cytosolic calcium across the wound field. Here we use laser ablation, a commonly used technique for the precision removal of cells or subcellular components, as a tool to investigate mechanisms of calcium entry upon wounding. Despite its precise ablation capabilities, we find that this technique damages cells outside the primary wound via a laser-induced cavitation bubble, which forms and collapses within microseconds of ablation. This cavitation bubble damages the plasma membranes of cells it contacts, tens of microns away from the wound, allowing direct calcium entry from extracellular fluid into damaged cells. Approximately 45 s after this rapid influx of calcium, we observe a second influx of calcium that spreads to neighboring cells beyond the footprint of cavitation. The occurrence of this second, delayed calcium expansion event is predicted by wound size, indicating that a separate mechanism of calcium entry exists, corresponding to cell loss at the primary wound. Our research demonstrates that the damage profile of laser ablation is more similar to a crush injury than the precision removal of individual cells. The generation of membrane microtears upon ablation is consistent with studies in the field of optoporation, which investigate ablation-induced cellular permeability. We conclude that multiple types of damage, including microtears and cell loss, result in multiple mechanisms of calcium influx around epithelial wounds.
Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
13 MeSH Terms
Absolute Quantification of Rifampicin by MALDI Imaging Mass Spectrometry Using Multiple TOF/TOF Events in a Single Laser Shot.
Prentice BM, Chumbley CW, Caprioli RM
(2017) J Am Soc Mass Spectrom 28: 136-144
MeSH Terms: Animals, Antibiotics, Antitubercular, Chromatography, High Pressure Liquid, Humans, Lasers, Liver, Rabbits, Rifampin, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Tandem Mass Spectrometry
Show Abstract · Added April 17, 2017
Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) allows for the visualization of molecular distributions within tissue sections. While providing excellent molecular specificity and spatial information, absolute quantification by MALDI IMS remains challenging. Especially in the low molecular weight region of the spectrum, analysis is complicated by matrix interferences and ionization suppression. Though tandem mass spectrometry (MS/MS) can be used to ensure chemical specificity and improve sensitivity by eliminating chemical noise, typical MALDI MS/MS modalities only scan for a single MS/MS event per laser shot. Herein, we describe TOF/TOF instrumentation that enables multiple fragmentation events to be performed in a single laser shot, allowing the intensity of the analyte to be referenced to the intensity of the internal standard in each laser shot while maintaining the benefits of MS/MS. This approach is illustrated by the quantitative analyses of rifampicin (RIF), an antibiotic used to treat tuberculosis, in pooled human plasma using rifapentine (RPT) as an internal standard. The results show greater than 4-fold improvements in relative standard deviation as well as improved coefficients of determination (R) and accuracy (>93% quality controls, <9% relative errors). This technology is used as an imaging modality to measure absolute RIF concentrations in liver tissue from an animal dosed in vivo. Each microspot in the quantitative image measures the local RIF concentration in the tissue section, providing absolute pixel-to-pixel quantification from different tissue microenvironments. The average concentration determined by IMS is in agreement with the concentration determined by HPLC-MS/MS, showing a percent difference of 10.6%. Graphical Abstract ᅟ.
1 Communities
1 Members
0 Resources
10 MeSH Terms
Multiple Time-of-Flight/Time-of-Flight Events in a Single Laser Shot for Improved Matrix-Assisted Laser Desorption/Ionization Tandem Mass Spectrometry Quantification.
Prentice BM, Chumbley CW, Hachey BC, Norris JL, Caprioli RM
(2016) Anal Chem 88: 9780-9788
MeSH Terms: Antihypertensive Agents, Enalapril, Humans, Lasers, Molecular Structure, Promethazine, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Time Factors, Verapamil
Show Abstract · Added September 8, 2016
Quantitative matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) approaches have historically suffered from poor accuracy and precision mainly due to the nonuniform distribution of matrix and analyte across the target surface, matrix interferences, and ionization suppression. Tandem mass spectrometry (MS/MS) can be used to ensure chemical specificity as well as improve signal-to-noise ratios by eliminating interferences from chemical noise, alleviating some concerns about dynamic range. However, conventional MALDI TOF/TOF modalities typically only scan for a single MS/MS event per laser shot, and multiplex assays require sequential analyses. We describe here new methodology that allows for multiple TOF/TOF fragmentation events to be performed in a single laser shot. This technology allows the reference of analyte intensity to that of the internal standard in each laser shot, even when the analyte and internal standard are quite disparate in m/z, thereby improving quantification while maintaining chemical specificity and duty cycle. In the quantitative analysis of the drug enalapril in pooled human plasma with ramipril as an internal standard, a greater than 4-fold improvement in relative standard deviation (<10%) was observed as well as improved coefficients of determination (R) and accuracy (>85% quality controls). Using this approach we have also performed simultaneous quantitative analysis of three drugs (promethazine, enalapril, and verapamil) using deuterated analogues of these drugs as internal standards.
1 Communities
2 Members
0 Resources
9 MeSH Terms
Optic nerve sheath fenestration using a Raman-shifted alexandrite laser.
Kozub J, Shen JH, Joos KM, Prasad R, Hutson MS
(2016) Lasers Surg Med 48: 270-80
MeSH Terms: Animals, Decompression, Surgical, Endoscopy, Lasers, Solid-State, Nerve Compression Syndromes, Neurosurgical Procedures, Optic Nerve, Pseudotumor Cerebri, Spectrum Analysis, Raman, Swine
Show Abstract · Added March 19, 2018
BACKGROUND AND OBJECTIVE - Optic nerve sheath fenestration is an established procedure for relief of potentially damaging overpressure on the optic nerve resulting from idiopathic intracranial hypertension. Prior work showed that a mid-IR free-electron laser could be delivered endoscopically and used to produce an effective fenestration. This study evaluates the efficacy of fenestration using a table-top mid-IR source based on a Raman-shifted alexandrite (RSA) laser.
STUDY DESIGN/MATERIALS AND METHODS - Porcine optic nerves were ablated using light from an RSA laser at wavelengths of 6.09, 6.27, and 6.43 μm and pulse energies up to 3 mJ using both free-space and endoscopic beam delivery through 250-μm I.D. hollow-glass waveguides. Waveguide transmission was characterized, ablation thresholds and etch rates were measured, and the efficacy of endoscopic fenestration was evaluated for ex vivo exposures using both optical coherence tomography and histological analysis.
RESULTS - Using endoscopic delivery, the RSA laser can effectively fenestrate porcine optic nerves. Performance was optimized at a wavelength of 6.09 μm and delivered pulse energies of 0.5-0.8 mJ (requiring 1.5-2.5 mJ to be incident on the waveguide). Under these conditions, the ablation threshold fluence was 0.8 ± 0.2 J/cm(2) , the ablation rate was 1-4 μm/pulse, and the margins of ablation craters showed little evidence of thermal or mechanical damage. Nonetheless, nominally identical exposures yielded highly variable ablation rates. This led to fenestrations that ranged from too deep to too shallow-either damaging the underlying optic nerve or requiring additional exposure to cut fully through the sheath. Of 48 excised nerves subjected to fenestration at 6.09 μm, 16 ex vivo fenestrations were judged as good, 23 as too deep, and 9 as too shallow.
CONCLUSIONS - Mid-IR pulses from the RSA laser, propagated through a flexible hollow waveguide, are capable of cutting through porcine optic nerve sheaths in surgically relevant times with reasonable accuracy and low collateral damage. This can be accomplished at wavelengths of 6.09 or 6.27 μm, with 6.09 μm slightly preferred. The depth of ex vivo fenestrations was difficult to control, but excised nerves lack a sufficient layer of cerebrospinal fluid that would provide an additional margin of safety in actual patients.
© 2015 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
10 MeSH Terms
A novel method for texture-mapping conoscopic surfaces for minimally invasive image-guided kidney surgery.
Ong R, Glisson CL, Burgner-Kahrs J, Simpson A, Danilchenko A, Lathrop R, Herrell SD, Webster RJ, Miga M, Galloway RL
(2016) Int J Comput Assist Radiol Surg 11: 1515-26
MeSH Terms: Animals, Humans, Kidney, Lasers, Minimally Invasive Surgical Procedures, Phantoms, Imaging, Surgery, Computer-Assisted, Swine
Show Abstract · Added July 23, 2018
PURPOSE - Organ-level registration is critical to image-guided therapy in soft tissue. This is especially important in organs such as the kidney which can freely move. We have developed a method for registration that combines three-dimensional locations from a holographic conoscope with an endoscopically obtained textured surface. By combining these data sources clear decisions as to the tissue from which the points arise can be made.
METHODS - By localizing the conoscope's laser dot in the endoscopic space, we register the textured surface to the cloud of conoscopic points. This allows the cloud of points to be filtered for only those arising from the kidney surface. Once a valid cloud is obtained we can use standard surface registration techniques to perform the image-space to physical-space registration. Since our methods use two distinct data sources we test for spatial accuracy and characterize temporal effects in phantoms, ex vivo porcine and human kidneys. In addition we use an industrial robot to provide controlled motion and positioning for characterizing temporal effects.
RESULTS - Our initial surface acquisitions are hand-held. This means that we take approximately 55 s to acquire a surface. At that rate we see no temporal effects due to acquisition synchronization or probe speed. Our surface registrations were able to find applied targets with submillimeter target registration errors.
CONCLUSION - The results showed that the textured surfaces could be reconstructed with submillimetric mean registration errors. While this paper focuses on kidney applications, this method could be applied to any anatomical structures where a line of sight can be created via open or minimally invasive surgical techniques.
0 Communities
1 Members
0 Resources
MeSH Terms
Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser.
Kozub JA, Shen JH, Joos KM, Prasad R, Hutson MS
(2015) J Biomed Opt 20: 105004
MeSH Terms: Cornea, Equipment Design, Equipment Failure Analysis, Humans, In Vitro Techniques, Laser Therapy, Lasers, Solid-State, Pilot Projects, Spectrum Analysis, Raman, Treatment Outcome
Show Abstract · Added March 19, 2018
Previous research showed that mid-infrared free-electron lasers could reproducibly ablate soft tissue with little collateral damage. The potential for surgical applications motivated searches for alternative tabletop lasers providing thermally confined pulses in the 6- to-7-µm wavelength range with sufficient pulse energy, stability, and reliability. Here, we evaluate a prototype Raman-shifted alexandrite laser. We measure ablation thresholds, etch rates, and collateral damage in gelatin and cornea as a function of laser wavelength (6.09, 6.27, or 6.43 µm), pulse energy (up to 3 mJ/pulse), and spot diameter (100 to 600 µm). We find modest wavelength dependence for ablation thresholds and collateral damage, with the lowest thresholds and least damage for 6.09 µm. We find a strong spot-size dependence for all metrics. When the beam is tightly focused (~100-µm diameter), ablation requires more energy, is highly variable and less efficient, and can yield large zones of mechanical damage (for pulse energies>1 mJ). When the beam is softly focused (~300-µm diameter), ablation proceeded at surgically relevant etch rates, with reasonable reproducibility (5% to 12% within a single sample), and little collateral damage. With improvements in pulse-energy stability, this prototype laser may have significant potential for soft-tissue surgical applications.
0 Communities
1 Members
0 Resources
10 MeSH Terms
Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.
Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han GW, Xu Q, de Waal PW, Ke J, Tan MH, Zhang C, Moeller A, West GM, Pascal BD, Van Eps N, Caro LN, Vishnivetskiy SA, Lee RJ, Suino-Powell KM, Gu X, Pal K, Ma J, Zhi X, Boutet S, Williams GJ, Messerschmidt M, Gati C, Zatsepin NA, Wang D, James D, Basu S, Roy-Chowdhury S, Conrad CE, Coe J, Liu H, Lisova S, Kupitz C, Grotjohann I, Fromme R, Jiang Y, Tan M, Yang H, Li J, Wang M, Zheng Z, Li D, Howe N, Zhao Y, Standfuss J, Diederichs K, Dong Y, Potter CS, Carragher B, Caffrey M, Jiang H, Chapman HN, Spence JC, Fromme P, Weierstall U, Ernst OP, Katritch V, Gurevich VV, Griffin PR, Hubbell WL, Stevens RC, Cherezov V, Melcher K, Xu HE
(2015) Nature 523: 561-7
MeSH Terms: Animals, Arrestin, Binding Sites, Crystallography, X-Ray, Disulfides, Humans, Lasers, Mice, Models, Molecular, Multiprotein Complexes, Protein Binding, Reproducibility of Results, Rhodopsin, Signal Transduction, X-Rays
Show Abstract · Added February 15, 2016
G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Implementation of a Gaussian beam laser and aspheric optics for high spatial resolution MALDI imaging MS.
Zavalin A, Yang J, Haase A, Holle A, Caprioli R
(2014) J Am Soc Mass Spectrom 25: 1079-82
MeSH Terms: Animals, Cerebellum, Lasers, Mice, Molecular Imaging, Optics and Photonics, Proteins, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Show Abstract · Added May 20, 2014
We have investigated the use of a Gaussian beam laser for MALDI Imaging Mass Spectrometry to provide a precisely defined laser spot of 5 μm diameter on target using a commercial MALDI TOF instrument originally designed to produce a 20 μm diameter laser beam spot at its smallest setting. A Gaussian beam laser was installed in the instrument in combination with an aspheric focusing lens. This ion source produced sharp ion images at 5 μm spatial resolution with signals of high intensity as shown for images from thin tissue sections of mouse brain.
1 Communities
1 Members
0 Resources
8 MeSH Terms
Miniature forward-imaging B-scan optical coherence tomography probe to guide real-time laser ablation.
Li Z, Shen JH, Kozub JA, Prasad R, Lu P, Joos KM
(2014) Lasers Surg Med 46: 193-202
MeSH Terms: Animals, Cornea, Lasers, Solid-State, Ophthalmologic Surgical Procedures, Retina, Swine, Tomography, Optical Coherence
Show Abstract · Added March 19, 2018
BACKGROUND AND OBJECTIVE - Investigations have shown that pulsed lasers tuned to 6.1 µm in wavelength are capable of ablating ocular and neural tissue with minimal collateral damage. This study investigated whether a miniature B-scan forward-imaging optical coherence tomography (OCT) probe can be combined with the laser to provide real-time visual feedback during laser incisions.
STUDY DESIGN/METHODS AND MATERIALS - A miniature 25-gauge B-scan forward-imaging OCT probe was developed and combined with a 250 µm hollow-glass waveguide to permit delivery of 6.1 µm laser energy. A gelatin mixture and both porcine corneal and retinal tissues were simultaneously imaged and lased (6.1 µm, 10 Hz, 0.4-0.7 mJ) through air. The ablation studies were observed and recorded in real time. The crater dimensions were measured using OCT imaging software (Bioptigen, Durham, NC). Histological analysis was performed on the ocular tissues.
RESULTS - The combined miniature forward-imaging OCT and mid-infrared laser-delivery probe successfully imaged real-time tissue ablation in gelatin, corneal tissue, and retinal tissue. Application of a constant number of 60 pulses at 0.5 mJ/pulse to the gelatin resulted in a mean crater depth of 123 ± 15 µm. For the corneal tissue, there was a significant correlation between the number of pulses used and depth of the lased hole (Pearson correlation coefficient = 0.82; P = 0.0002). Histological analysis of the cornea and retina tissues showed discrete holes with minimal thermal damage.
CONCLUSIONS - A combined miniature OCT and laser-delivery probe can monitor real-time tissue laser ablation. With additional testing and improvements, this novel instrument has the future possibility of effectively guiding surgeries by simultaneously imaging and ablating tissue.
© 2013 Wiley Periodicals, Inc.
0 Communities
1 Members
0 Resources
7 MeSH Terms