Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 80

Publication Record

Connections

The major miR-31 target genes STK40 and LATS2 and their implications in the regulation of keratinocyte growth and hair differentiation.
Luan L, Shi J, Yu Z, Andl T
(2017) Exp Dermatol 26: 497-504
MeSH Terms: 3' Untranslated Regions, Adaptor Proteins, Signal Transducing, Animals, Apoptosis, Carcinoma, Basal Cell, Cell Differentiation, Cell Line, Tumor, Cell Proliferation, Cell Survival, Hair Follicle, Homeodomain Proteins, Humans, Intracellular Signaling Peptides and Proteins, Keratinocytes, Mice, Mice, Transgenic, MicroRNAs, Protein-Serine-Threonine Kinases, Skin, Skin Neoplasms, Transcription Factors, Tumor Suppressor Proteins
Show Abstract · Added June 21, 2017
Emerging evidence indicates that even subtle changes in the expression of key genes of signalling pathways can have profound effects. MicroRNAs (miRNAs) are masters of subtlety and generally have only mild effects on their target genes. The microRNA miR-31 is one of the major microRNAs in many cutaneous conditions associated with activated keratinocytes, such as the hyperproliferative diseases psoriasis, non-melanoma skin cancer and hair follicle growth. miR-31 is a marker of the hair growth phase, and in our miR-31 transgenic mouse model it impairs the function of keratinocytes. This leads to aberrant proliferation, apoptosis, and differentiation that results in altered hair growth, while the loss of miR-31 leads to increased hair growth. Through in vitro and in vivo studies, we have defined a set of conserved miR-31 target genes, including LATS2 and STK40, which serve as new players in the regulation of keratinocyte growth and hair follicle biology. LATS2 can regulate growth of keratinocytes and we have identified a function of STK40 that can promote the expression of key hair follicle programme regulators such as HR, DLX3 and HOXC13.
© 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
1 Communities
0 Members
0 Resources
22 MeSH Terms
Rictor/mTORC2 deficiency enhances keratinocyte stress tolerance via mitohormesis.
Tassone B, Saoncella S, Neri F, Ala U, Brusa D, Magnuson MA, Provero P, Oliviero S, Riganti C, Calautti E
(2017) Cell Death Differ 24: 731-746
MeSH Terms: Acetylcysteine, Animals, Apoptosis, Cell Proliferation, Cells, Cultured, Cellular Senescence, Epirubicin, Glutamic Acid, Hyperplasia, Keratin-14, Keratinocytes, Mice, Mice, Inbred C57BL, Mice, Knockout, Mitochondria, Radiation Tolerance, Rapamycin-Insensitive Companion of mTOR Protein, Reactive Oxygen Species, Skin, Tetradecanoylphorbol Acetate, Transcriptome, X-Rays
Show Abstract · Added March 7, 2017
How metabolic pathways required for epidermal tissue growth and remodeling influence the ability of keratinocytes to survive stressful conditions is still largely unknown. The mechanistic target of rapamycin complex 2 (mTORC2) regulates growth and metabolism of several tissues, but its functions in epidermal cells are poorly defined. Rictor is an adaptor protein essential for mTORC2 activity. To explore the roles of mTORC2 in the epidermis, we have conditionally deleted rictor in mice via K14-Cre-mediated homologous recombination and found that its deficiency causes moderate tissue hypoplasia, reduced keratinocyte proliferation and attenuated hyperplastic response to TPA. Noteworthy, rictor-deficient keratinocytes displayed increased lifespan, protection from senescence, and enhanced tolerance to cellular stressors such as growth factors deprivation, epirubicin and X-ray in vitro and radioresistance in vivo. Rictor-deficient keratinocytes exhibited changes in global gene expression profiles consistent with metabolic alterations and enhanced stress tolerance, a shift in cell catabolic processes from glycids and lipids to glutamine consumption and increased production of mitochondrial reactive oxygen species (ROS). Mechanistically, the resiliency of rictor-deficient epidermal cells relies on these ROS increases, indicating stress resistance via mitohormesis. Thus, our findings reveal a new link between metabolic changes and stress adaptation of keratinocytes centered on mTORC2 activity, with potential implications in skin aging and therapeutic resistance of epithelial tumors.
3 Communities
1 Members
0 Resources
22 MeSH Terms
The focal adhesion protein PINCH-1 associates with EPLIN at integrin adhesion sites.
Karaköse E, Geiger T, Flynn K, Lorenz-Baath K, Zent R, Mann M, Fässler R
(2015) J Cell Sci 128: 1023-33
MeSH Terms: Adaptor Proteins, Signal Transducing, Animals, Cell Movement, Cells, Cultured, Cytoskeletal Proteins, Focal Adhesions, Integrins, Keratinocytes, LIM Domain Proteins, Male, Membrane Proteins, Mice, Mice, Transgenic
Show Abstract · Added February 4, 2016
PINCH-1 is a LIM-only domain protein that forms a ternary complex with integrin-linked kinase (ILK) and parvin (to form the IPP complex) downstream of integrins. Here, we demonstrate that PINCH-1 (also known as Lims1) gene ablation in the epidermis of mice caused epidermal detachment from the basement membrane, epidermal hyperthickening and progressive hair loss. PINCH-1-deficient keratinocytes also displayed profound adhesion, spreading and migration defects in vitro that were substantially more severe than those of ILK-deficient keratinocytes indicating that PINCH-1 also exerts functions in an ILK-independent manner. By isolating the PINCH-1 interactome, the LIM-domain-containing and actin-binding protein epithelial protein lost in neoplasm (EPLIN, also known as LIMA1) was identified as a new PINCH-1-associated protein. EPLIN localized, in a PINCH-1-dependent manner, to integrin adhesion sites of keratinocytes in vivo and in vitro and its depletion severely attenuated keratinocyte spreading and migration on collagen and fibronectin without affecting PINCH-1 levels in focal adhesions. Given that the low PINCH-1 levels in ILK-deficient keratinocytes were sufficient to recruit EPLIN to integrin adhesions, our findings suggest that PINCH-1 regulates integrin-mediated adhesion of keratinocytes through the interactions with ILK as well as EPLIN.
© 2015. Published by The Company of Biologists Ltd.
1 Communities
1 Members
0 Resources
13 MeSH Terms
Functional and mechanistic investigation of Shikonin in scarring.
Xie Y, Fan C, Dong Y, Lynam E, Leavesley DI, Li K, Su Y, Yang Y, Upton Z
(2015) Chem Biol Interact 228: 18-27
MeSH Terms: Apoptosis, Cell Proliferation, Cell Survival, Cells, Cultured, Cicatrix, Collagen, Dose-Response Relationship, Drug, Humans, Keratinocytes, Naphthoquinones, Structure-Activity Relationship
Show Abstract · Added January 20, 2015
Scarring is a significant medical burden; financially to the health care system and physically and psychologically for patients. Importantly, there have been numerous case reports describing the occurrence of cancer in burn scars. Currently available therapies are not satisfactory due to their undesirable side-effects, complex delivery routes, requirements for long-term use and/or expense. Radix Arnebiae (Zi Cao), a perennial herb, has been clinically applied to treat burns and manage scars for thousands of years in Asia. Shikonin, an active component extracted from Radix Arnebiae, has been demonstrated to induce apoptosis in cancer cells. Apoptosis is an essential process during scar tissue remodelling. It was therefore hypothesized that Shikonin may induce apoptosis in scar-associated cells. This investigation presents the first detailed in vitro study examining the functional responses of scar-associated cells to Shikonin, and investigates the mechanisms underlying these responses. The data obtained suggests that Shikonin inhibits cell viability and proliferation and reduces detectable collagen in scar-derived fibroblasts. Further investigation revealed that Shikonin induces apoptosis in scar fibroblasts by differentially regulating the expression of caspase 3, Bcl-2, phospho-Erk1/2 and phospho-p38. In addition, Shikonin down-regulates the expression of collagen I, collagen III and alpha-smooth muscle actin genes hence attenuating collagen synthesis in scar-derived fibroblasts. In summary, it is demonstrated that Shikonin induces apoptosis and decreases collagen production in scar-associated fibroblasts and may therefore hold potential as a novel scar remediation therapy.
Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
0 Communities
1 Members
0 Resources
11 MeSH Terms
TGFβ loss activates ADAMTS-1-mediated EGF-dependent invasion in a model of esophageal cell invasion.
Le Bras GF, Taylor C, Koumangoye RB, Revetta F, Loomans HA, Andl CD
(2015) Exp Cell Res 330: 29-42
MeSH Terms: ADAM Proteins, ADAMTS1 Protein, Carcinoma, Squamous Cell, Cell Line, Tumor, Cell Movement, Cell Proliferation, Esophageal Neoplasms, Fibroblasts, Heparin-binding EGF-like Growth Factor, Humans, Interleukin-1, Keratinocytes, Nerve Tissue Proteins, Receptors, Immunologic, Receptors, Transforming Growth Factor beta, Transforming Growth Factor alpha, Transforming Growth Factor beta
Show Abstract · Added October 13, 2015
The TGFβ signaling pathway is essential to epithelial homeostasis and is often inhibited during progression of esophageal squamous cell carcinoma. Recently, an important role for TGFβ signaling has been described in the crosstalk between epithelial and stromal cells regulating squamous tumor cell invasion in mouse models of head-and-neck squamous cell carcinoma (HNSCC). Loss of TGFβ signaling, in either compartment, leads to HNSCC however, the mechanisms involved are not well understood. Using organotypic reconstruct cultures (OTC) to model the interaction between epithelial and stromal cells that occur in dysplastic lesions, we show that loss of TGFβ signaling promotes an invasive phenotype in both fibroblast and epithelial compartments. Employing immortalized esophageal keratinocytes established to reproduce common mutations of esophageal squamous cell carcinoma, we show that treatment of OTC with inhibitors of TGFβ signaling (A83-01 or SB431542) enhances invasion of epithelial cells into a fibroblast-embedded Matrigel/collagen I matrix. Invasion induced by A83-01 is independent of proliferation but relies on protease activity and expression of ADAMTS-1 and can be altered by matrix density. This invasion was associated with increased expression of pro-inflammatory cytokines, IL1 and EGFR ligands HB-EGF and TGFα. Altering EGF signaling prevented or induced epithelial cell invasion in this model. Loss of expression of the TGFβ target gene ROBO1 suggested that chemorepulsion may regulate keratinocyte invasion. Taken together, our data show increased invasion through inhibition of TGFβ signaling altered epithelial-fibroblasts interactions, repressing markers of activated fibroblasts, and altering integrin-fibronectin interactions. These results suggest that inhibition of TGFβ signaling modulates an array of pathways that combined promote multiple aspects of tumor invasion.
Copyright © 2014 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Redox control of p53 in the transcriptional regulation of TGF-β1 target genes through SMAD cooperativity.
Overstreet JM, Samarakoon R, Meldrum KK, Higgins PJ
(2014) Cell Signal 26: 1427-36
MeSH Terms: Acetylation, Animals, Cell Line, DNA-Binding Proteins, Enzyme Activation, Epithelial Cells, Fibroblasts, Fibrosis, Gene Expression Regulation, Humans, Keratinocytes, Kidney Diseases, Kidney Tubules, Mice, Mice, Knockout, NADPH Oxidases, Phosphorylation, Plasminogen Activator Inhibitor 1, Promoter Regions, Genetic, RNA Interference, RNA, Small Interfering, Reactive Oxygen Species, Signal Transduction, Smad3 Protein, Transcriptional Activation, Transforming Growth Factor beta1, Tumor Suppressor Protein p53
Show Abstract · Added April 19, 2016
Transforming growth factor-β1 (TGF-β1) regulates the tissue response to injury and is the principal driver of excessive scarring leading to fibrosis and eventual organ failure. The TGF-β1 effectors SMAD3 and p53 are major contributors to disease progression. While SMAD3 is an established pro-fibrotic factor, the role of p53 in the TGF-β1-induced fibrotic program is not clear. p53 gene silencing, genetic ablation/subsequent rescue, and pharmacological inhibition confirmed that p53 was required for expression of plasminogen activator inhibitor-1 (PAI-1), a major TGF-β1 target gene and a key causative element in fibrotic disorders. TGF-β1 regulated p53 activity by stimulating p53(Ser15 and 9) phosphorylation and acetylation, promoting interactions with activated SMADs and subsequent binding of p53/SMAD3 to the PAI-1 promoter in HK-2 human renal tubular epithelial cells and HaCaT human keratinocytes. Immunohistochemistry revealed prominent co-induction of SMAD3, p53 and PAI-1 in the tubular epithelium of the obstructed kidney consistent with a potential in vivo role for p53 and SMADs in TGF-β1-driven renal fibrosis. TGF-β1-initiated phosphorylation of p53(Ser15) and up-regulation of expression of several pro-fibrotic genes, moreover, was dependent on the rapid generation of reactive oxygen species (ROS). shRNA silencing of the p22(Phox) subunit of NADP(H) oxidases in HK-2 cells partially attenuated (over 50%) p53(Ser15) phosphorylation and PAI-1 induction. These studies highlight the role of free radicals in p53 activation and subsequent pro-fibrotic reprogramming by TGF-β1 via the SMAD3-p53 transcriptional axis. Present findings provide a rationale for therapeutic targeting of SMAD3-p53 in aberrant TGF-β1 signaling associated with renal fibrosis.
Copyright © 2014 Elsevier Inc. All rights reserved.
0 Communities
1 Members
0 Resources
27 MeSH Terms
Transcriptome analysis of psoriasis in a large case-control sample: RNA-seq provides insights into disease mechanisms.
Li B, Tsoi LC, Swindell WR, Gudjonsson JE, Tejasvi T, Johnston A, Ding J, Stuart PE, Xing X, Kochkodan JJ, Voorhees JJ, Kang HM, Nair RP, Abecasis GR, Elder JT
(2014) J Invest Dermatol 134: 1828-1838
MeSH Terms: Case-Control Studies, Cytoskeletal Proteins, Down-Regulation, Epidermis, Gene Expression Profiling, High-Throughput Nucleotide Sequencing, Humans, Interleukin-17, Keratinocytes, Kruppel-Like Transcription Factors, Oligonucleotide Array Sequence Analysis, Psoriasis, RNA, Long Noncoding, RNA-Binding Proteins, Transcription Factors, Transcriptome
Show Abstract · Added February 15, 2016
To increase our understanding of psoriasis, we used high-throughput complementary DNA sequencing (RNA-seq) to assay the transcriptomes of lesional psoriatic and normal skin. We sequenced polyadenylated RNA-derived complementary DNAs from 92 psoriatic and 82 normal punch biopsies, generating an average of ∼38 million single-end 80-bp reads per sample. Comparison of 42 samples examined by both RNA-seq and microarray revealed marked differences in sensitivity, with transcripts identified only by RNA-seq having much lower expression than those also identified by microarray. RNA-seq identified many more differentially expressed transcripts enriched in immune system processes. Weighted gene coexpression network analysis (WGCNA) revealed multiple modules of coordinately expressed epidermal differentiation genes, overlapping significantly with genes regulated by the long noncoding RNA TINCR, its target gene, staufen-1 (STAU1), the p63 target gene ZNF750, and its target KLF4. Other coordinately expressed modules were enriched for lymphoid and/or myeloid signature transcripts and genes induced by IL-17 in keratinocytes. Dermally expressed genes were significantly downregulated in psoriatic biopsies, most likely because of expansion of the epidermal compartment. These results show the power of WGCNA to elucidate gene regulatory circuits in psoriasis, and emphasize the influence of tissue architecture in both differential expression and coexpression analysis.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Immune cells control skin lymphatic electrolyte homeostasis and blood pressure.
Wiig H, Schröder A, Neuhofer W, Jantsch J, Kopp C, Karlsen TV, Boschmann M, Goss J, Bry M, Rakova N, Dahlmann A, Brenner S, Tenstad O, Nurmi H, Mervaala E, Wagner H, Beck FX, Müller DN, Kerjaschki D, Luft FC, Harrison DG, Alitalo K, Titze J
(2013) J Clin Invest 123: 2803-15
MeSH Terms: Animals, Cells, Cultured, Homeostasis, Hyperplasia, Hypertension, Keratinocytes, Lymph, Lymphatic Vessels, Macrophages, Male, Mice, Mice, 129 Strain, Mice, Inbred C57BL, Osmolar Concentration, Rats, Rats, Sprague-Dawley, Skin, Sodium Chloride, Dietary, Transcription Factors, Vascular Endothelial Growth Factor C, Vascular Endothelial Growth Factor Receptor-3, Water-Electrolyte Balance
Show Abstract · Added March 31, 2015
The skin interstitium sequesters excess Na+ and Cl- in salt-sensitive hypertension. Mononuclear phagocyte system (MPS) cells are recruited to the skin, sense the hypertonic electrolyte accumulation in skin, and activate the tonicity-responsive enhancer-binding protein (TONEBP, also known as NFAT5) to initiate expression and secretion of VEGFC, which enhances electrolyte clearance via cutaneous lymph vessels and increases eNOS expression in blood vessels. It is unclear whether this local MPS response to osmotic stress is important to systemic blood pressure control. Herein, we show that deletion of TonEBP in mouse MPS cells prevents the VEGFC response to a high-salt diet (HSD) and increases blood pressure. Additionally, an antibody that blocks the lymph-endothelial VEGFC receptor, VEGFR3, selectively inhibited MPS-driven increases in cutaneous lymphatic capillary density, led to skin Cl- accumulation, and induced salt-sensitive hypertension. Mice overexpressing soluble VEGFR3 in epidermal keratinocytes exhibited hypoplastic cutaneous lymph capillaries and increased Na+, Cl-, and water retention in skin and salt-sensitive hypertension. Further, we found that HSD elevated skin osmolality above plasma levels. These results suggest that the skin contains a hypertonic interstitial fluid compartment in which MPS cells exert homeostatic and blood pressure-regulatory control by local organization of interstitial electrolyte clearance via TONEBP and VEGFC/VEGFR3-mediated modification of cutaneous lymphatic capillary function.
1 Communities
1 Members
0 Resources
22 MeSH Terms
Mechanical stretch inhibits lipopolysaccharide-induced keratinocyte-derived chemokine and tissue factor expression while increasing procoagulant activity in murine lung epithelial cells.
Sebag SC, Bastarache JA, Ware LB
(2013) J Biol Chem 288: 7875-84
MeSH Terms: Animals, Cell Line, Cell Survival, Chemokines, Coagulants, Enzyme-Linked Immunosorbent Assay, Epithelial Cells, Inflammation, Keratinocytes, Lipopolysaccharides, Lung, Mice, NF-kappa B, Signal Transduction, Thromboplastin, Toll-Like Receptor 4, Toll-Like Receptors
Show Abstract · Added May 19, 2014
Previous studies have shown that the innate immune stimulant LPS augments mechanical ventilation-induced pulmonary coagulation and inflammation. Whether these effects are mediated by alveolar epithelial cells is unclear. The alveolar epithelium is a key regulator of the innate immune reaction to pathogens and can modulate both intra-alveolar inflammation and coagulation through up-regulation of proinflammatory cytokines and tissue factor (TF), the principal initiator of the extrinsic coagulation pathway. We hypothesized that cyclic mechanical stretch (MS) potentiates LPS-mediated alveolar epithelial cell (MLE-12) expression of the chemokine keratinocyte-derived cytokine (KC) and TF. Contrary to our hypothesis, MS significantly decreased LPS-induced KC and TF mRNA and protein expression. Investigation into potential mechanisms showed that stretch significantly reduced LPS-induced surface expression of TLR4 that was not a result of increased degradation. Decreased cell surface TLR4 expression was concomitant with reduced LPS-mediated NF-κB activation. Immunofluorescence staining showed that cyclic MS markedly altered LPS-induced organization of actin filaments. In contrast to expression, MS significantly increased LPS-induced cell surface TF activity independent of calcium signaling. These findings suggest that cyclic MS of lung epithelial cells down-regulates LPS-mediated inflammatory and procoagulant expression by modulating actin organization and reducing cell surface TLR4 expression and signaling. However, because LPS-induced surface TF activity was enhanced by stretch, these data demonstrate differential pathways regulating TF expression and activity. Ultimately, loss of LPS responsiveness in the epithelium induced by MS could result in increased susceptibility of the lung to bacterial infections in the setting of mechanical ventilation.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Novel p63 target genes involved in paracrine signaling and keratinocyte differentiation.
Barton CE, Johnson KN, Mays DM, Boehnke K, Shyr Y, Boukamp P, Pietenpol JA
(2010) Cell Death Dis 1: e74
MeSH Terms: Binding Sites, Cell Differentiation, Cell Line, Chromatin Immunoprecipitation, Gene Expression Regulation, Humans, Interleukin-1alpha, Keratinocytes, Paracrine Communication, RNA Interference, RNA, Small Interfering, Trans-Activators, Transcription Factor 7-Like 1 Protein, Transcription Factors, Tumor Suppressor Proteins
Show Abstract · Added February 13, 2014
The transcription factor p63 is required for proper epidermal barrier formation and maintenance. Herein, we used chromatin immunoprecipitation coupled with DNA sequencing to identify novel p63 target genes involved in normal human epidermal keratinocyte (NHEKs) growth and differentiation. We identified over 2000 genomic sites bound by p63, of which 82 were also transcriptionally regulated by p63 in NHEKs. Through the discovery of interleukin-1-α as a p63 target gene, we identified that p63 is a regulator of epithelial-mesenchymal crosstalk. Further, three-dimensional organotypic co-cultures revealed TCF7L1, another novel p63 target gene, as a regulator of epidermal proliferation and differentiation, providing a mechanism by which p63 maintains the proliferative potential of basal epidermal cells. The discovery of new target genes links p63 to diverse signaling pathways required for epidermal development, including regulation of paracrine signaling to proliferative potential. Further mechanistic insight into p63 regulation of epidermal cell growth and differentiation is provided by the identification of a number of novel p63 target genes in this study.
0 Communities
2 Members
0 Resources
15 MeSH Terms