Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 460

Publication Record

Connections

Resolution of Gastric Cancer-Promoting Inflammation: A Novel Strategy for Anti-cancer Therapy.
Piazuelo MB, Riechelmann RP, Wilson KT, Algood HMS
(2019) Curr Top Microbiol Immunol 421: 319-359
MeSH Terms: Cytokines, Gastric Mucosa, Helicobacter Infections, Helicobacter pylori, Humans, Inflammation, Stomach Neoplasms, Tumor Microenvironment
Show Abstract · Added June 6, 2019
The connection between inflammation and cancer was initially recognized by Rudolf Virchow in the nineteenth century. During the last decades, a large body of evidence has provided support to his hypothesis, and now inflammation is recognized as one of the hallmarks of cancer, both in etiopathogenesis and ongoing tumor growth. Infection with the pathogen Helicobacter pylori is the primary causal factor in 90% of gastric cancer (GC) cases. As we increase our understanding of how chronic inflammation develops in the stomach and contributes to carcinogenesis, there is increasing interest in targeting cancer-promoting inflammation as a strategy to treat GC. Moreover, once cancer develops and anti-cancer immune responses are suppressed, there is evidence of a substantial shift in the microenvironment and new targets for immune therapy emerge. In this chapter, we provide insight into inflammation-related factors, including T lymphocytes, macrophages, pro-inflammatory chemokines, and cytokines, which promote H. pylori-associated GC initiation and growth. While intervening with chronic inflammation is not a new practice in rheumatology or gastroenterology, this approach has not been fully explored for its potential to prevent carcinogenesis or to contribute to the treatment of GC. This review highlights current and possible strategies for therapeutic intervention including (i) targeting pro-inflammatory mediators, (ii) targeting growth factors and pathways involved in angiogenesis in the gastric tumor microenvironment, and (iii) enhancing anti-tumor immunity. In addition, we highlight a significant number of clinical trials and discuss the importance of individual tumor characterization toward offering personalized immune-related therapy.
0 Communities
1 Members
0 Resources
8 MeSH Terms
Manganese Detoxification by MntE Is Critical for Resistance to Oxidative Stress and Virulence of .
Grunenwald CM, Choby JE, Juttukonda LJ, Beavers WN, Weiss A, Torres VJ, Skaar EP
(2019) mBio 10:
MeSH Terms: Animals, Cation Transport Proteins, Disease Models, Animal, Gene Expression Regulation, Bacterial, Homeostasis, Iron, Manganese, Mice, Inbred BALB C, Microbial Viability, Oxidative Stress, Staphylococcal Infections, Staphylococcus aureus, Transcription Factors, Transcription, Genetic, Virulence
Show Abstract · Added April 2, 2019
Manganese (Mn) is an essential micronutrient critical for the pathogenesis of , a significant cause of human morbidity and mortality. Paradoxically, excess Mn is toxic; therefore, maintenance of intracellular Mn homeostasis is required for survival. Here we describe a Mn exporter in , MntE, which is a member of the cation diffusion facilitator (CDF) protein family and conserved among Gram-positive pathogens. Upregulation of transcription in response to excess Mn is dependent on the presence of MntR, a transcriptional repressor of the Mn uptake system. Inactivation of or leads to reduced growth in media supplemented with Mn, demonstrating MntE is required for detoxification of excess Mn. Inactivation of results in elevated levels of intracellular Mn, but reduced intracellular iron (Fe) levels, supporting the hypothesis that MntE functions as a Mn efflux pump and Mn efflux influences Fe homeostasis. Strains inactivated for are more sensitive to the oxidants NaOCl and paraquat, indicating Mn homeostasis is critical for resisting oxidative stress. Furthermore, and are required for full virulence of during infection, suggesting experiences Mn toxicity Combined, these data support a model in which MntR controls Mn homeostasis by balancing transcriptional repression of and induction of , both of which are critical for pathogenesis. Thus, Mn efflux contributes to bacterial survival and virulence during infection, establishing MntE as a potential antimicrobial target and expanding our understanding of Mn homeostasis. Manganese (Mn) is generally viewed as a critical nutrient that is beneficial to pathogenic bacteria due to its function as an enzymatic cofactor and its capability of acting as an antioxidant; yet paradoxically, high concentrations of this transition metal can be toxic. In this work, we demonstrate utilizes the cation diffusion facilitator (CDF) family protein MntE to alleviate Mn toxicity through efflux of excess Mn. Inactivation of leads to a significant reduction in resistance to oxidative stress and mediated mortality within a mouse model of systemic infection. These results highlight the importance of MntE-mediated Mn detoxification in intracellular Mn homeostasis, resistance to oxidative stress, and virulence. Therefore, this establishes MntE as a potential target for development of anti- therapeutics.
Copyright © 2019 Grunenwald et al.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Synthesis of the Siderophore Coelichelin and Its Utility as a Probe in the Study of Bacterial Metal Sensing and Response.
Williams JC, Sheldon JR, Imlay HD, Dutter BF, Draelos MM, Skaar EP, Sulikowski GA
(2019) Org Lett 21: 679-682
MeSH Terms: Iron, Molecular Probes, Oligopeptides, Pseudomonas aeruginosa, Siderophores
Show Abstract · Added April 7, 2019
A convergent total synthesis of the siderophore coelichelin is described. The synthetic route also provided access to acetyl coelichelin and other congeners of the parent siderophore. The synthetic products were evaluated for their ability to bind ferric iron and promote growth of a siderophore-deficient strain of the Gram-negative bacterium Pseudomonas aeruginosa under iron restriction conditions. The results of these studies indicate coelichelin and several derivatives serve as ferric iron delivery vehicles for P. aeruginosa.
0 Communities
1 Members
0 Resources
MeSH Terms
Yeast require redox switching in DNA primase.
O'Brien E, Salay LE, Epum EA, Friedman KL, Chazin WJ, Barton JK
(2018) Proc Natl Acad Sci U S A 115: 13186-13191
MeSH Terms: Crystallography, X-Ray, DNA Primase, Electron Transport, Iron-Sulfur Proteins, Models, Molecular, Mutation, Oxidation-Reduction, Protein Conformation, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins
Show Abstract · Added March 26, 2019
Eukaryotic DNA primases contain a [4Fe4S] cluster in the C-terminal domain of the p58 subunit (p58C) that affects substrate affinity but is not required for catalysis. We show that, in yeast primase, the cluster serves as a DNA-mediated redox switch governing DNA binding, just as in human primase. Despite a different structural arrangement of tyrosines to facilitate electron transfer between the DNA substrate and [4Fe4S] cluster, in yeast, mutation of tyrosines Y395 and Y397 alters the same electron transfer chemistry and redox switch. Mutation of conserved tyrosine 395 diminishes the extent of p58C participation in normal redox-switching reactions, whereas mutation of conserved tyrosine 397 causes oxidative cluster degradation to the [3Fe4S] species during p58C redox signaling. Switching between oxidized and reduced states in the presence of the Y397 mutations thus puts primase [4Fe4S] cluster integrity and function at risk. Consistent with these observations, we find that yeast tolerate mutations to Y395 in p58C, but the single-residue mutation Y397L in p58C is lethal. Our data thus show that a constellation of tyrosines for protein-DNA electron transfer mediates the redox switch in eukaryotic primases and is required for primase function in vivo.
Copyright © 2018 the Author(s). Published by PNAS.
0 Communities
2 Members
0 Resources
MeSH Terms
Molecular Basis for the Evolution of Species-Specific Hemoglobin Capture by Staphylococcus aureus.
Choby JE, Buechi HB, Farrand AJ, Skaar EP, Barber MF
(2018) mBio 9:
MeSH Terms: Animals, Cation Transport Proteins, Evolution, Molecular, Hemoglobins, Host-Pathogen Interactions, Iron, Mutation, Primates, Protein Binding, Species Specificity, Staphylococcus aureus
Show Abstract · Added April 7, 2019
Metals are a limiting resource for pathogenic bacteria and must be scavenged from host proteins. Hemoglobin provides the most abundant source of iron in the human body and is required by several pathogens to cause invasive disease. However, the consequences of hemoglobin evolution for bacterial nutrient acquisition remain unclear. Here we show that the α- and β-globin genes exhibit strikingly parallel signatures of adaptive evolution across simian primates. Rapidly evolving sites in hemoglobin correspond to binding interfaces of IsdB, a bacterial hemoglobin receptor harbored by pathogenic Using an evolution-guided experimental approach, we demonstrate that the divergence between primates and staphylococcal isolates governs hemoglobin recognition and bacterial growth. The reintroduction of putative adaptive mutations in α- or β-globin proteins was sufficient to impair binding, providing a mechanism for the evolution of disease resistance. These findings suggest that bacterial hemoprotein capture has driven repeated evolutionary conflicts with hemoglobin during primate descent. During infection, bacteria must steal metals, including iron, from the host tissue. Therefore, pathogenic bacteria have evolved metal acquisition systems to overcome the elaborate processes mammals use to withhold metal from pathogens. uses IsdB, a hemoglobin receptor, to thieve iron-containing heme from hemoglobin within human blood. We find evidence that primate hemoglobin has undergone rapid evolution at protein surfaces contacted by IsdB. Additionally, variation in the hemoglobin sequences among primates, or variation in IsdB of related staphylococci, reduces bacterial hemoglobin capture. Together, these data suggest that has evolved to recognize human hemoglobin in the face of rapid evolution at the IsdB binding interface, consistent with repeated evolutionary conflicts in the battle for iron during host-pathogen interactions.
Copyright © 2018 Choby et al.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Substrate Binding Regulates Redox Signaling in Human DNA Primase.
O'Brien E, Holt ME, Salay LE, Chazin WJ, Barton JK
(2018) J Am Chem Soc 140: 17153-17162
MeSH Terms: DNA, DNA Primase, Electrochemical Techniques, Humans, Iron-Sulfur Proteins, Nucleotides, Oxidation-Reduction, Protein Binding, Protein Domains, Transcription Elongation, Genetic, Transcription Initiation, Genetic
Show Abstract · Added March 26, 2019
Generation of daughter strands during DNA replication requires the action of DNA primase to synthesize an initial short RNA primer on the single-stranded DNA template. Primase is a heterodimeric enzyme containing two domains whose activity must be coordinated during primer synthesis: an RNA polymerase domain in the small subunit (p48) and a [4Fe4S] cluster-containing C-terminal domain of the large subunit (p58C). Here we examine the redox switching properties of the [4Fe4S] cluster in the full p48/p58 heterodimer using DNA electrochemistry. Unlike with isolated p58C, robust redox signaling in the primase heterodimer requires binding of both DNA and NTPs; NTP binding shifts the p48/p58 cluster redox potential into the physiological range, generating a signal near 160 mV vs NHE. Preloading of primase with NTPs enhances catalytic activity on primed DNA, suggesting that primase configurations promoting activity are more highly populated in the NTP-bound protein. We propose that p48/p58 binding of anionic DNA and NTPs affects the redox properties of the [4Fe4S] cluster; this electrostatic change is likely influenced by the alignment of primase subunits during activity because the configuration affects the [4Fe4S] cluster environment and coupling to DNA bases for redox signaling. Thus, both binding of polyanionic substrates and configurational dynamics appear to influence [4Fe4S] redox signaling properties. These results suggest that these factors should be considered generally in characterizing signaling networks of large, multisubunit DNA-processing [4Fe4S] enzymes.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Treatment-Induced Tumor Cell Apoptosis and Secondary Necrosis Drive Tumor Progression in the Residual Tumor Microenvironment through MerTK and IDO1.
Werfel TA, Elion DL, Rahman B, Hicks DJ, Sanchez V, Gonzales-Ericsson PI, Nixon MJ, James JL, Balko JM, Scherle PA, Koblish HK, Cook RS
(2019) Cancer Res 79: 171-182
MeSH Terms: Animals, Antineoplastic Agents, Apoptosis, Female, Indoleamine-Pyrrole 2,3,-Dioxygenase, Inflammation, Lapatinib, Lung Neoplasms, Macrophages, Mammary Neoplasms, Experimental, Mice, Necrosis, Phagocytosis, Receptor, ErbB-2, T-Lymphocytes, Regulatory, Tumor Microenvironment, c-Mer Tyrosine Kinase
Show Abstract · Added April 15, 2019
Efferocytosis is the process by which apoptotic cells are cleared from tissue by phagocytic cells. The removal of apoptotic cells prevents them from undergoing secondary necrosis and releasing their inflammation-inducing intracellular contents. Efferocytosis also limits tissue damage by increasing immunosuppressive cytokines and leukocytes and maintains tissue homeostasis by promoting tolerance to antigens derived from apoptotic cells. Thus, tumor cell efferocytosis following cytotoxic cancer treatment could impart tolerance to tumor cells evading treatment-induced apoptosis with deleterious consequences in tumor residual disease. We report here that efferocytosis cleared apoptotic tumor cells in residual disease of lapatinib-treated HER2 mammary tumors in MMTV-Neu mice, increased immunosuppressive cytokines, myeloid-derived suppressor cells (MDSC), and regulatory T cells (Treg). Blockade of efferocytosis induced secondary necrosis of apoptotic cells, but failed to prevent increased tumor MDSCs, Treg, and immunosuppressive cytokines. We found that efferocytosis stimulated expression of IFN-γ, which stimulated the expression of indoleamine-2,3-dioxegenase (IDO) 1, an immune regulator known for driving maternal-fetal antigen tolerance. Combined inhibition of efferocytosis and IDO1 in tumor residual disease decreased apoptotic cell- and necrotic cell-induced immunosuppressive phenotypes, blocked tumor metastasis, and caused tumor regression in 60% of MMTV-Neu mice. This suggests that apoptotic and necrotic tumor cells, via efferocytosis and IDO1, respectively, promote tumor 'homeostasis' and progression. SIGNIFICANCE: These findings show in a model of HER2 breast cancer that necrosis secondary to impaired efferocytosis activates IDO1 to drive immunosuppression and tumor progression.
©2018 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
17 MeSH Terms
Mechanical Forces in Tumor Angiogenesis.
Zanotelli MR, Reinhart-King CA
(2018) Adv Exp Med Biol 1092: 91-112
MeSH Terms: Biomechanical Phenomena, Endothelial Cells, Extracellular Fluid, Humans, Neoplasms, Neovascularization, Pathologic, Tumor Microenvironment
Show Abstract · Added April 10, 2019
A defining hallmark of cancer and cancer development is upregulated angiogenesis. The vasculature formed in tumors is structurally abnormal, not organized in the conventional hierarchical arrangement, and more permeable than normal vasculature. These features contribute to leaky, tortuous, and dilated blood vessels, which act to create heterogeneous blood flow, compression of vessels, and elevated interstitial fluid pressure. As such, abnormalities in the tumor vasculature not only affect the delivery of nutrients and oxygen to the tumor, but also contribute to creating an abnormal tumor microenvironment that further promotes tumorigenesis. The role of chemical signaling events in mediating tumor angiogenesis has been well researched; however, the relative contribution of physical cues and mechanical regulation of tumor angiogenesis is less understood. Growing research indicates that the physical microenvironment plays a significant role in tumor progression and promoting abnormal tumor vasculature. Here, we review how mechanical cues found in the tumor microenvironment promote aberrant tumor angiogenesis. Specifically, we discuss the influence of matrix stiffness and mechanical stresses in tumor tissue on tumor vasculature, as well as the mechanosensory pathways utilized by endothelial cells to respond to the physical cues found in the tumor microenvironment. We also discuss the impact of the resulting aberrant tumor vasculature on tumor progression and therapeutic treatment.
0 Communities
1 Members
0 Resources
7 MeSH Terms
Therapeutically Active RIG-I Agonist Induces Immunogenic Tumor Cell Killing in Breast Cancers.
Elion DL, Jacobson ME, Hicks DJ, Rahman B, Sanchez V, Gonzales-Ericsson PI, Fedorova O, Pyle AM, Wilson JT, Cook RS
(2018) Cancer Res 78: 6183-6195
MeSH Terms: Animals, Apoptosis, Breast Neoplasms, Cell Line, Tumor, Cytokines, DEAD Box Protein 58, Female, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Humans, Immunity, Innate, Immunotherapy, Lymphocytes, Tumor-Infiltrating, MCF-7 Cells, Mice, Mice, Inbred BALB C, Mice, Nude, Nanoparticles, Neoplasm Metastasis, Neoplasms, Pyroptosis, Signal Transduction, Tumor Microenvironment
Show Abstract · Added April 15, 2019
Cancer immunotherapies that remove checkpoint restraints on adaptive immunity are gaining clinical momentum but have not achieved widespread success in breast cancers, a tumor type considered poorly immunogenic and which harbors a decreased presence of tumor-infiltrating lymphocytes. Approaches that activate innate immunity in breast cancer cells and the tumor microenvironment are of increasing interest, based on their ability to induce immunogenic tumor cell death, type I IFNs, and lymphocyte-recruiting chemokines. In agreement with reports in other cancers, we observe loss, downregulation, or mutation of the innate viral nucleotide sensor retinoic acid-inducible gene I (RIG-I/) in only 1% of clinical breast cancers, suggesting potentially widespread applicability for therapeutic RIG-I agonists that activate innate immunity. This was tested using an engineered RIG-I agonist in a breast cancer cell panel representing each of three major clinical breast cancer subtypes. Treatment with RIG-I agonist resulted in upregulation and mitochondrial localization of RIG-I and activation of proinflammatory transcription factors STAT1 and NF-κB. RIG-I agonist triggered the extrinsic apoptosis pathway and pyroptosis, a highly immunogenic form of cell death in breast cancer cells. RIG-I agonist also induced expression of lymphocyte-recruiting chemokines and type I IFN, confirming that cell death and cytokine modulation occur in a tumor cell-intrinsic manner. Importantly, RIG-I activation in breast tumors increased tumor lymphocytes and decreased tumor growth and metastasis. Overall, these findings demonstrate successful therapeutic delivery of a synthetic RIG-I agonist to induce tumor cell killing and to modulate the tumor microenvironment These findings describe the first in vivo delivery of RIG-I mimetics to tumors, demonstrating a potent immunogenic and therapeutic effect in the context of otherwise poorly immunogenic breast cancers. .
©2018 American Association for Cancer Research.
0 Communities
1 Members
0 Resources
23 MeSH Terms
Cerebrospinal Fluid Ceruloplasmin, Haptoglobin, and Vascular Endothelial Growth Factor Are Associated with Neurocognitive Impairment in Adults with HIV Infection.
Kallianpur AR, Gittleman H, Letendre S, Ellis R, Barnholtz-Sloan JS, Bush WS, Heaton R, Samuels DC, Franklin DR, Rosario-Cookson D, Clifford DB, Collier AC, Gelman B, Marra CM, McArthur JC, McCutchan JA, Morgello S, Grant I, Simpson D, Connor JR, Hulgan T, CHARTER Study Group
(2019) Mol Neurobiol 56: 3808-3818
MeSH Terms: Adult, Antiretroviral Therapy, Highly Active, Biomarkers, Ceruloplasmin, Comorbidity, Female, HIV Infections, Haptoglobins, Humans, Inflammation, Iron, Male, Multivariate Analysis, Neurocognitive Disorders, Regression Analysis, Vascular Endothelial Growth Factor A
Show Abstract · Added December 11, 2019
Dysregulated iron transport and a compromised blood-brain barrier are implicated in HIV-associated neurocognitive disorders (HAND). We quantified the levels of proteins involved in iron transport and/or angiogenesis-ceruloplasmin, haptoglobin, and vascular endothelial growth factor (VEGF)-as well as biomarkers of neuroinflammation, in cerebrospinal fluid (CSF) from 405 individuals with HIV infection and comprehensive neuropsychiatric assessments. Associations with HAND [defined by a Global Deficit Score (GDS) ≥ 0.5, GDS as a continuous measure (cGDS), or by Frascati criteria] were evaluated for the highest versus lowest tertile of each biomarker, adjusting for potential confounders. Higher CSF VEGF was associated with GDS-defined impairment [odds ratio (OR) 2.17, p = 0.006] and cGDS in unadjusted analyses and remained associated with GDS impairment after adjustment (p = 0.018). GDS impairment was also associated with higher CSF ceruloplasmin (p = 0.047) and with higher ceruloplasmin and haptoglobin in persons with minimal comorbidities (ORs 2.37 and 2.13, respectively; both p = 0.043). In persons with minimal comorbidities, higher ceruloplasmin and haptoglobin were associated with HAND by Frascati criteria (both p < 0.05), and higher ceruloplasmin predicted worse impairment (higher cGDS values, p < 0.01). In the subgroup with undetectable viral load and minimal comorbidity, CSF ceruloplasmin and haptoglobin were strongly associated with GDS impairment (ORs 5.57 and 2.96, respectively; both p < 0.01) and HAND (both p < 0.01). Concurrently measured CSF IL-6 and TNF-α were only weakly correlated to these three biomarkers. Higher CSF ceruloplasmin, haptoglobin, and VEGF are associated with a significantly greater likelihood of HAND, suggesting that interventions aimed at disordered iron transport and angiogenesis may be beneficial in this disorder.
0 Communities
1 Members
0 Resources
MeSH Terms