Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 103

Publication Record

Connections

Manganese Detoxification by MntE Is Critical for Resistance to Oxidative Stress and Virulence of .
Grunenwald CM, Choby JE, Juttukonda LJ, Beavers WN, Weiss A, Torres VJ, Skaar EP
(2019) MBio 10:
MeSH Terms: Animals, Cation Transport Proteins, Disease Models, Animal, Gene Expression Regulation, Bacterial, Homeostasis, Iron, Manganese, Mice, Inbred BALB C, Microbial Viability, Oxidative Stress, Staphylococcal Infections, Staphylococcus aureus, Transcription Factors, Transcription, Genetic, Virulence
Show Abstract · Added April 2, 2019
Manganese (Mn) is an essential micronutrient critical for the pathogenesis of , a significant cause of human morbidity and mortality. Paradoxically, excess Mn is toxic; therefore, maintenance of intracellular Mn homeostasis is required for survival. Here we describe a Mn exporter in , MntE, which is a member of the cation diffusion facilitator (CDF) protein family and conserved among Gram-positive pathogens. Upregulation of transcription in response to excess Mn is dependent on the presence of MntR, a transcriptional repressor of the Mn uptake system. Inactivation of or leads to reduced growth in media supplemented with Mn, demonstrating MntE is required for detoxification of excess Mn. Inactivation of results in elevated levels of intracellular Mn, but reduced intracellular iron (Fe) levels, supporting the hypothesis that MntE functions as a Mn efflux pump and Mn efflux influences Fe homeostasis. Strains inactivated for are more sensitive to the oxidants NaOCl and paraquat, indicating Mn homeostasis is critical for resisting oxidative stress. Furthermore, and are required for full virulence of during infection, suggesting experiences Mn toxicity Combined, these data support a model in which MntR controls Mn homeostasis by balancing transcriptional repression of and induction of , both of which are critical for pathogenesis. Thus, Mn efflux contributes to bacterial survival and virulence during infection, establishing MntE as a potential antimicrobial target and expanding our understanding of Mn homeostasis. Manganese (Mn) is generally viewed as a critical nutrient that is beneficial to pathogenic bacteria due to its function as an enzymatic cofactor and its capability of acting as an antioxidant; yet paradoxically, high concentrations of this transition metal can be toxic. In this work, we demonstrate utilizes the cation diffusion facilitator (CDF) family protein MntE to alleviate Mn toxicity through efflux of excess Mn. Inactivation of leads to a significant reduction in resistance to oxidative stress and mediated mortality within a mouse model of systemic infection. These results highlight the importance of MntE-mediated Mn detoxification in intracellular Mn homeostasis, resistance to oxidative stress, and virulence. Therefore, this establishes MntE as a potential target for development of anti- therapeutics.
Copyright © 2019 Grunenwald et al.
0 Communities
1 Members
0 Resources
15 MeSH Terms
Molecular Basis for the Evolution of Species-Specific Hemoglobin Capture by Staphylococcus aureus.
Choby JE, Buechi HB, Farrand AJ, Skaar EP, Barber MF
(2018) MBio 9:
MeSH Terms: Animals, Cation Transport Proteins, Evolution, Molecular, Hemoglobins, Host-Pathogen Interactions, Iron, Mutation, Primates, Protein Binding, Species Specificity, Staphylococcus aureus
Show Abstract · Added April 7, 2019
Metals are a limiting resource for pathogenic bacteria and must be scavenged from host proteins. Hemoglobin provides the most abundant source of iron in the human body and is required by several pathogens to cause invasive disease. However, the consequences of hemoglobin evolution for bacterial nutrient acquisition remain unclear. Here we show that the α- and β-globin genes exhibit strikingly parallel signatures of adaptive evolution across simian primates. Rapidly evolving sites in hemoglobin correspond to binding interfaces of IsdB, a bacterial hemoglobin receptor harbored by pathogenic Using an evolution-guided experimental approach, we demonstrate that the divergence between primates and staphylococcal isolates governs hemoglobin recognition and bacterial growth. The reintroduction of putative adaptive mutations in α- or β-globin proteins was sufficient to impair binding, providing a mechanism for the evolution of disease resistance. These findings suggest that bacterial hemoprotein capture has driven repeated evolutionary conflicts with hemoglobin during primate descent. During infection, bacteria must steal metals, including iron, from the host tissue. Therefore, pathogenic bacteria have evolved metal acquisition systems to overcome the elaborate processes mammals use to withhold metal from pathogens. uses IsdB, a hemoglobin receptor, to thieve iron-containing heme from hemoglobin within human blood. We find evidence that primate hemoglobin has undergone rapid evolution at protein surfaces contacted by IsdB. Additionally, variation in the hemoglobin sequences among primates, or variation in IsdB of related staphylococci, reduces bacterial hemoglobin capture. Together, these data suggest that has evolved to recognize human hemoglobin in the face of rapid evolution at the IsdB binding interface, consistent with repeated evolutionary conflicts in the battle for iron during host-pathogen interactions.
Copyright © 2018 Choby et al.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Large-scale whole-exome sequencing association studies identify rare functional variants influencing serum urate levels.
Tin A, Li Y, Brody JA, Nutile T, Chu AY, Huffman JE, Yang Q, Chen MH, Robinson-Cohen C, Macé A, Liu J, Demirkan A, Sorice R, Sedaghat S, Swen M, Yu B, Ghasemi S, Teumer A, Vollenweider P, Ciullo M, Li M, Uitterlinden AG, Kraaij R, Amin N, van Rooij J, Kutalik Z, Dehghan A, McKnight B, van Duijn CM, Morrison A, Psaty BM, Boerwinkle E, Fox CS, Woodward OM, Köttgen A
(2018) Nat Commun 9: 4228
MeSH Terms: Exome, Genetic Predisposition to Disease, Glucose Transport Proteins, Facilitative, Humans, Kidney Function Tests, Meta-Analysis as Topic, Organic Anion Transporters, Organic Cation Transport Proteins, Protein Structure, Secondary, Uric Acid
Show Abstract · Added January 3, 2019
Elevated serum urate levels can cause gout, an excruciating disease with suboptimal treatment. Previous GWAS identified common variants with modest effects on serum urate. Here we report large-scale whole-exome sequencing association studies of serum urate and kidney function among ≤19,517 European ancestry and African-American individuals. We identify aggregate associations of low-frequency damaging variants in the urate transporters SLC22A12 (URAT1; p = 1.3 × 10) and SLC2A9 (p = 4.5 × 10). Gout risk in rare SLC22A12 variant carriers is halved (OR = 0.5, p = 4.9 × 10). Selected rare variants in SLC22A12 are validated in transport studies, confirming three as loss-of-function (R325W, R405C, and T467M) and illustrating the therapeutic potential of the new URAT1-blocker lesinurad. In SLC2A9, mapping of rare variants of large effects onto the predicted protein structure reveals new residues that may affect urate binding. These findings provide new insights into the genetic architecture of serum urate, and highlight molecular targets in SLC22A12 and SLC2A9 for lowering serum urate and preventing gout.
0 Communities
1 Members
0 Resources
MeSH Terms
Cytokine-mediated changes in K channel activity promotes an adaptive Ca response that sustains β-cell insulin secretion during inflammation.
Dickerson MT, Bogart AM, Altman MK, Milian SC, Jordan KL, Dadi PK, Jacobson DA
(2018) Sci Rep 8: 1158
MeSH Terms: Adult, Animals, Calcium, Female, Gene Expression Regulation, Glucose, Humans, Insulin, Insulin Secretion, Insulin-Secreting Cells, Interferon-gamma, Interleukin-1beta, Ion Transport, Islets of Langerhans, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Potassium, Potassium Channels, Tandem Pore Domain, Primary Cell Culture, RNA, Messenger, Sarcoplasmic Reticulum Calcium-Transporting ATPases, Tissue Culture Techniques, Tumor Necrosis Factor-alpha
Show Abstract · Added February 7, 2018
Cytokines present during low-grade inflammation contribute to β-cell dysfunction and diabetes. Cytokine signaling disrupts β-cell glucose-stimulated Ca influx (GSCI) and endoplasmic reticulum (ER) Ca ([Ca]) handling, leading to diminished glucose-stimulated insulin secretion (GSIS). However, cytokine-mediated changes in ion channel activity that alter β-cell Ca handling remain unknown. Here we investigated the role of K currents in cytokine-mediated β-cell dysfunction. K currents, which control the termination of intracellular Ca ([Ca]) oscillations, were reduced following cytokine exposure. As a consequence, [Ca] and electrical oscillations were accelerated. Cytokine exposure also increased basal islet [Ca] and decreased GSCI. The effect of cytokines on TALK-1 K currents were also examined as TALK-1 mediates K by facilitating [Ca] release. Cytokine exposure decreased KCNK16 transcript abundance and associated TALK-1 protein expression, increasing [Ca] storage while maintaining 2 phase GSCI and GSIS. This adaptive Ca response was absent in TALK-1 KO islets, which exhibited decreased 2 phase GSCI and diminished GSIS. These findings suggest that K and TALK-1 currents play important roles in altered β-cell Ca handling and electrical activity during low-grade inflammation. These results also reveal that a cytokine-mediated reduction in TALK-1 serves an acute protective role in β-cells by facilitating increased Ca content to maintain GSIS.
0 Communities
1 Members
0 Resources
25 MeSH Terms
In vivo bioluminescence imaging of labile iron accumulation in a murine model of infection.
Aron AT, Heffern MC, Lonergan ZR, Vander Wal MN, Blank BR, Spangler B, Zhang Y, Park HM, Stahl A, Renslo AR, Skaar EP, Chang CJ
(2017) Proc Natl Acad Sci U S A 114: 12669-12674
MeSH Terms: 2,2'-Dipyridyl, Acinetobacter Infections, Acinetobacter baumannii, Anemia, Iron-Deficiency, Animals, Cation Transport Proteins, Cations, Divalent, Disease Models, Animal, Ferric Compounds, Firefly Luciferin, Fluorescent Dyes, Gene Expression Regulation, Hepcidins, Homeostasis, Iron, Iron Overload, Iron Regulatory Protein 1, Iron Regulatory Protein 2, Luminescent Measurements, Mice, Mice, Transgenic, Quaternary Ammonium Compounds, Receptors, Transferrin, Signal Transduction, Transferrin
Show Abstract · Added March 15, 2018
Iron is an essential metal for all organisms, yet disruption of its homeostasis, particularly in labile forms that can contribute to oxidative stress, is connected to diseases ranging from infection to cancer to neurodegeneration. Iron deficiency is also among the most common nutritional deficiencies worldwide. To advance studies of iron in healthy and disease states, we now report the synthesis and characterization of iron-caged luciferin-1 (ICL-1), a bioluminescent probe that enables longitudinal monitoring of labile iron pools (LIPs) in living animals. ICL-1 utilizes a bioinspired endoperoxide trigger to release d-aminoluciferin for selective reactivity-based detection of Fe with metal and oxidation state specificity. The probe can detect physiological changes in labile Fe levels in live cells and mice experiencing iron deficiency or overload. Application of ICL-1 in a model of systemic bacterial infection reveals increased iron accumulation in infected tissues that accompany transcriptional changes consistent with elevations in both iron acquisition and retention. The ability to assess iron status in living animals provides a powerful technology for studying the contributions of iron metabolism to physiology and pathology.
0 Communities
1 Members
0 Resources
25 MeSH Terms
Pharmacological targeting of SPAK kinase in disorders of impaired epithelial transport.
Zhang J, Karimy JK, Delpire E, Kahle KT
(2017) Expert Opin Ther Targets 21: 795-804
MeSH Terms: Animals, Colitis, Cystic Fibrosis, Drug Design, Epithelial Cells, Essential Hypertension, Humans, Hypertension, Ion Transport, Molecular Targeted Therapy, Protein-Serine-Threonine Kinases, Signal Transduction
Show Abstract · Added April 3, 2018
INTRODUCTION - The mammalian SPS1-related proline/alanine-rich serine-threonine kinase SPAK (STK39) modulates ion transport across and between epithelial cells in response to environmental stimuli such osmotic stress and inflammation. Research over the last decade has established a central role for SPAK in the regulation of ion and water transport in the distal nephron, colonic crypts, and pancreatic ducts, and has implicated deregulated SPAK signaling in NaCl-sensitive hypertension, ulcerative colitis and Crohn's disease, and cystic fibrosis. Areas covered: We review recent advances in our understanding of the role of SPAK kinase in the regulation of epithelial transport. We highlight how SPAK signaling - including its upstream Cl sensitive activators, the WNK kinases, and its downstream ion transport targets, the cation- Cl cotransporters contribute to human disease. We discuss prospects for the pharmacotherapeutic targeting of SPAK kinase in specific human disorders that feature impaired epithelial homeostasis. Expert opinion: The development of novel drugs that antagonize the SPAK-WNK interaction, inhibit SPAK kinase activity, or disrupt SPAK kinase activation by interfering with its binding to MO25α/β could be useful adjuncts in essential hypertension, inflammatory colitis, and cystic fibrosis.
0 Communities
1 Members
0 Resources
MeSH Terms
Trafficking Ion Transporters to the Apical Membrane of Polarized Intestinal Enterocytes.
Engevik AC, Goldenring JR
(2018) Cold Spring Harb Perspect Biol 10:
MeSH Terms: Animals, Cell Membrane, Cell Polarity, Cystic Fibrosis Transmembrane Conductance Regulator, Cytoskeletal Proteins, Enterocytes, Humans, Ion Transport, Malabsorption Syndromes, Membrane Transport Proteins, Microvilli, Mucolipidoses, Myosin Heavy Chains, Myosin Type V, Protein Transport, Sodium-Hydrogen Exchanger 3
Show Abstract · Added April 18, 2017
Epithelial cells lining the gastrointestinal tract require distinct apical and basolateral domains to function properly. Trafficking and insertion of enzymes and transporters into the apical brush border of intestinal epithelial cells is essential for effective digestion and absorption of nutrients. Specific critical ion transporters are delivered to the apical brush border to facilitate fluid and electrolyte uptake. Maintenance of these apical transporters requires both targeted delivery and regulated membrane recycling. Examination of altered apical trafficking in patients with Microvillus Inclusion disease caused by inactivating mutations in MYO5B has led to insights into the regulation of apical trafficking by elements of the apical recycling system. Modeling of MYO5B loss in cell culture and animal models has led to recognition of Rab11a and Rab8a as critical regulators of apical brush border function. All of these studies show the importance of apical membrane trafficking dynamics in maintenance of polarized epithelial cell function.
Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Stromal Interaction Molecule 1 (STIM1) Regulates ATP-sensitive Potassium () and Store-operated Ca Channels in MIN6 β-Cells.
Leech CA, Kopp RF, Nelson HA, Nandi J, Roe MW
(2017) J Biol Chem 292: 2266-2277
MeSH Terms: Animals, Calcium Channels, Calcium Signaling, Cell Line, Gene Knockdown Techniques, Humans, Ion Transport, Islets of Langerhans, KATP Channels, Mice, Neoplasm Proteins, Stromal Interaction Molecule 1
Show Abstract · Added July 6, 2018
Stromal interaction molecule 1 (STIM1) regulates store-operated Ca entry (SOCE) and other ion channels either as an endoplasmic reticulum Ca-sensing protein or when present in the plasma membrane. However, the role of STIM1 in insulin-secreting β-cells is unresolved. We report that lowering expression of , the gene that encodes STIM1, in insulin-secreting MIN6 β-cells with RNA interference inhibits SOCE and ATP-sensitive K () channel activation. The effects of knockdown were reversed by transduction of MIN6 cells with an adenovirus gene shuttle vector that expressed human Immunoprecipitation studies revealed that STIM1 binds to nucleotide binding fold-1 (NBF1) of the sulfonylurea receptor 1 (SUR1) subunit of the channel. Binding of STIM1 to SUR1 was enhanced by poly-lysine. Our data indicate that SOCE and channel activity are regulated by STIM1. This suggests that STIM1 is a multifunctional signaling effector that participates in the control of membrane excitability and Ca signaling events in β-cells.
© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
0 Communities
1 Members
0 Resources
MeSH Terms
Contribution of Organic Anion-Transporting Polypeptides 1A/1B to Doxorubicin Uptake and Clearance.
Lee HH, Leake BF, Kim RB, Ho RH
(2017) Mol Pharmacol 91: 14-24
MeSH Terms: ATP Binding Cassette Transporter, Subfamily B, Member 1, Animals, Biological Transport, Cell Membrane, Dogs, Doxorubicin, HeLa Cells, Humans, Kinetics, Liver, Liver-Specific Organic Anion Transporter 1, Madin Darby Canine Kidney Cells, Male, Mice, Models, Biological, Mutant Proteins, Organic Anion Transporters, Organic Anion Transporters, Sodium-Independent, Organic Cation Transport Proteins, Rats, Transfection
Show Abstract · Added November 10, 2016
The organic anion-transporting polypeptides represent an important family of drug uptake transporters that mediate the cellular uptake of a broad range of substrates including numerous drugs. Doxorubicin is a highly efficacious and well-established anthracycline chemotherapeutic agent commonly used in the treatment of a wide range of cancers. Although doxorubicin is a known substrate for efflux transporters such as P-glycoprotein (P-gp; MDR1, ABCB1), significantly less is known regarding its interactions with drug uptake transporters. Here, we investigated the role of organic anion transporting polypeptide (OATP) transporters to the disposition of doxorubicin. A recombinant vaccinia-based method for expressing uptake transporters in HeLa cells revealed that OATP1A2, but not OATP1B1 or OATP1B3, and the rat ortholog Oatp1a4 were capable of significant doxorubicin uptake. Interestingly, transwell assays using Madin-Darby canine kidney II cell line cells stably expressing specific uptake and/or efflux transporters revealed that OATP1B1, OATP1B3, and OATP1A2, either alone or in combination with MDR1, significantly transported doxorubicin. An assessment of polymorphisms in SLCO1A2 revealed that four variants were associated with significantly impaired doxorubicin transport in vitro. In vivo doxorubicin disposition studies revealed that doxorubicin plasma area under the curve was significantly higher (1.7-fold) in Slco1a/1b versus wild-type mice. The liver-to-plasma ratio of doxorubicin was significantly decreased (2.3-fold) in Slco1a/1b2 mice and clearance was reduced by 40% compared with wild-type mice, suggesting Oatp1b transporters are important for doxorubicin hepatic uptake. In conclusion, we demonstrate important roles for OATP1A/1B in transporter-mediated uptake and disposition of doxorubicin.
Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
0 Communities
1 Members
0 Resources
21 MeSH Terms
Combined Deletion of Slc30a7 and Slc30a8 Unmasks a Critical Role for ZnT8 in Glucose-Stimulated Insulin Secretion.
Syring KE, Boortz KA, Oeser JK, Ustione A, Platt KA, Shadoan MK, McGuinness OP, Piston DW, Powell DR, O'Brien RM
(2016) Endocrinology 157: 4534-4541
MeSH Terms: Animals, Body Weight, Cation Transport Proteins, Female, Glucagon-Secreting Cells, Glucose, Glucose Intolerance, Insulin, Insulin Secretion, Insulin-Secreting Cells, Islets of Langerhans, Male, Mice, Mice, Knockout, Sex Factors, Zinc Transporter 8
Show Abstract · Added March 14, 2018
Polymorphisms in the SLC30A8 gene, which encodes the ZnT8 zinc transporter, are associated with altered susceptibility to type 2 diabetes (T2D), and SLC30A8 haploinsufficiency is protective against the development of T2D in obese humans. SLC30A8 is predominantly expressed in pancreatic islet β-cells, but surprisingly, multiple knockout mouse studies have shown little effect of Slc30a8 deletion on glucose tolerance or glucose-stimulated insulin secretion (GSIS). Multiple other Slc30a isoforms are expressed at low levels in pancreatic islets. We hypothesized that functional compensation by the Slc30a7 isoform, which encodes ZnT7, limits the impact of Slc30a8 deletion on islet function. We therefore analyzed the effect of Slc30a7 deletion alone or in combination with Slc30a8 on in vivo glucose metabolism and GSIS in isolated islets. Deletion of Slc30a7 alone had complex effects in vivo, impairing glucose tolerance and reducing the glucose-stimulated increase in plasma insulin levels, hepatic glycogen levels, and pancreatic insulin content. Slc30a7 deletion also affected islet morphology and increased the ratio of islet α- to β-cells. However, deletion of Slc30a7 alone had no effect on GSIS in isolated islets, whereas combined deletion of Slc30a7 and Slc30a8 abolished GSIS. These data demonstrate that the function of ZnT8 in islets can be unmasked by removal of ZnT7 and imply that ZnT8 may affect T2D susceptibility through actions in other tissues where it is expressed at low levels rather than through effects on pancreatic islet function.
0 Communities
1 Members
0 Resources
16 MeSH Terms