Other search tools

About this data

The publication data currently available has been vetted by Vanderbilt faculty, staff, administrators and trainees. The data itself is retrieved directly from NCBI's PubMed and is automatically updated on a weekly basis to ensure accuracy and completeness.

If you have any questions or comments, please contact us.

Results: 1 to 10 of 43

Publication Record

Connections

Isoflurane and ketamine:xylazine differentially affect intraocular pressure-associated scotopic threshold responses in Sprague-Dawley rats.
Choh V, Gurdita A, Tan B, Feng Y, Bizheva K, McCulloch DL, Joos KM
(2017) Doc Ophthalmol 135: 121-132
MeSH Terms: Anesthetics, Combined, Anesthetics, Inhalation, Animals, Dark Adaptation, Electroretinography, Injections, Intraperitoneal, Intraocular Pressure, Isoflurane, Ketamine, Male, Night Vision, Rats, Rats, Sprague-Dawley, Retina, Sensory Thresholds, Xylazine
Show Abstract · Added March 19, 2018
PURPOSE - Amplitudes of electroretinograms (ERG) are enhanced during acute, moderate elevation of intraocular pressure (IOP) in rats anaesthetised with isoflurane. As anaesthetics alone are known to affect ERG amplitudes, the present study compares the effects of inhalant isoflurane and injected ketamine:xylazine on the scotopic threshold response (STR) in rats with moderate IOP elevation.
METHODS - Isoflurane-anaesthetised (n = 9) and ketamine:xylazine-anaesthetised (n = 6) rats underwent acute unilateral IOP elevation using a vascular loop anterior to the equator of the right eye. STRs to a luminance series (subthreshold to -3.04 log scotopic cd s/m) were recorded from each eye of Sprague-Dawley rats before, during, and after IOP elevation.
RESULTS - Positive STR (pSTR) amplitudes for all conditions were significantly smaller (p = 0.0001) for isoflurane- than for ketamine:xylazine-anaesthetised rats. In addition, ketamine:xylazine was associated with a progressive increase in pSTR amplitudes over time (p = 0.0028). IOP elevation was associated with an increase in pSTR amplitude (both anaesthetics p < 0.0001). The absolute interocular differences in IOP-associated enhancement of pSTR amplitudes for ketamine:xylazine and isoflurane were similar (66.3 ± 35.5 vs. 54.2 ± 24.1 µV, respectively). However, the fold increase in amplitude during IOP elevation was significantly higher in the isoflurane- than in the ketamine:xylazine-anaesthetised rats (16.8 ± 29.7x vs. 2.1 ± 2.7x, respectively, p = 0.0004).
CONCLUSIONS - The anaesthetics differentially affect the STRs in the rat model with markedly reduced amplitudes with isoflurane compared to ketamine:xylazine. However, the IOP-associated enhancement is of similar absolute magnitude for the two anaesthetics, suggesting that IOP stress and anaesthetic effects operate on separate retinal mechanisms.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Pigmented and albino rats differ in their responses to moderate, acute and reversible intraocular pressure elevation.
Gurdita A, Tan B, Joos KM, Bizheva K, Choh V
(2017) Doc Ophthalmol 134: 205-219
MeSH Terms: Acute Disease, Albinism, Analysis of Variance, Animals, Dark Adaptation, Electroretinography, Intraocular Pressure, Male, Ocular Hypertension, Rats, Rats, Inbred BN, Rats, Long-Evans, Rats, Sprague-Dawley, Retina, Retinal Ganglion Cells, Tomography, Optical Coherence
Show Abstract · Added March 19, 2018
PURPOSE - To compare the electrophysiological and morphological responses to acute, moderately elevated intraocular pressure (IOP) in Sprague-Dawley (SD), Long-Evans (LE) and Brown Norway (BN) rat eyes.
METHODS - Eleven-week-old SD (n = 5), LE (n = 5) and BN (n = 5) rats were used. Scotopic threshold responses (STRs), Maxwellian flash electroretinograms (ERGs) or ultrahigh-resolution optical coherence tomography (UHR-OCT) images of the rat retinas were collected from both eyes before, during and after IOP elevation of one eye. IOP was raised to ~35 mmHg for 1 h using a vascular loop, while the other eye served as a control. STRs, ERGs and UHR-OCT images were acquired on 3 days separated by 1 day of no experimental manipulation.
RESULTS - There were no significant differences between species in baseline electroretinography. However, during IOP elevation, peak positive STR amplitudes in LE (mean ± standard deviation 259 ± 124 µV) and BN (228 ± 96 µV) rats were about fourfold higher than those in SD rats (56 ± 46 µV) rats (p = 0.0002 for both). Similarly, during elevated IOP, ERG b-wave amplitudes were twofold higher in LE and BN rats compared to those of SD rats (947 ± 129 µV and 892 ± 184 µV, vs 427 ± 138 µV; p = 0.0002 for both). UHR-OCT images showed backward bowing in all groups during IOP elevation, with a return to typical form about 30 min after IOP elevation.
CONCLUSION - Differences in the loop-induced responses between the strains are likely due to different inherent retinal morphology and physiology.
0 Communities
1 Members
0 Resources
16 MeSH Terms
Quantification of Focal Outflow Enhancement Using Differential Canalograms.
Loewen RT, Brown EN, Scott G, Parikh H, Schuman JS, Loewen NA
(2016) Invest Ophthalmol Vis Sci 57: 2831-8
MeSH Terms: Animals, Aqueous Humor, Image Enhancement, Intraocular Pressure, Microscopy, Fluorescence, Models, Animal, Sclera, Swine, Trabecular Meshwork
Show Abstract · Added August 31, 2017
PURPOSE - To quantify regional changes of conventional outflow caused by ab interno trabeculectomy (AIT).
METHODS - Gonioscopic, plasma-mediated AIT was established in enucleated pig eyes. We developed a program to automatically quantify outflow changes (R, package eye-canalogram, github.com) using a fluorescent tracer reperfusion technique. Trabecular meshwork (TM) ablation was demonstrated with fluorescent spheres in six eyes before formal outflow quantification with two-dye reperfusion canalograms in six additional eyes. Eyes were perfused with a central, intracameral needle at 15 mm Hg. Canalograms and histology were correlated for each eye.
RESULTS - The pig eye provided a model with high similarity to AIT in human patients. Histology indicated ablation of TM and unroofing of most Schlemm's canal segments. Spheres highlighted additional circumferential and radial outflow beyond the immediate area of ablation. Differential canalograms showed that AIT caused an increase of outflow of 17 ± 5-fold inferonasally, 14 ± 3-fold superonasally, and also an increase in the opposite quadrants with a 2 ± 1-fold increase superotemporally, and 3 ± 3 inferotemporally. Perilimbal specific flow image analysis showed an accelerated nasal filling with an additional perilimbal flow direction into adjacent quadrants.
CONCLUSIONS - A quantitative, differential canalography technique was developed that allows us to quantify supraphysiological outflow enhancement by AIT.
0 Communities
1 Members
0 Resources
9 MeSH Terms
Short-Term Moderately Elevated Intraocular Pressure Is Associated With Elevated Scotopic Electroretinogram Responses.
Choh V, Gurdita A, Tan B, Prasad RC, Bizheva K, Joos KM
(2016) Invest Ophthalmol Vis Sci 57: 2140-51
MeSH Terms: Animals, Blotting, Western, Dark Adaptation, Electroretinography, Intraocular Pressure, Male, Ocular Hypertension, Rats, Rats, Sprague-Dawley, Retina, Tomography, Optical Coherence
Show Abstract · Added March 19, 2018
PURPOSE - Moderately elevated intraocular pressure (IOP) is a risk factor for open-angle glaucoma. Some patients suffer glaucoma despite clinically measured normal IOPs. Fluctuations in IOP may have a significant role since IOPs are higher during sleep and inversion activities. Controlled transient elevations of IOPs in rats over time lead to optic nerve structural changes that are similar to the early changes observed in constant chronic models of glaucoma. Because early intervention decreases glaucoma progression, this study was done to determine if early physiological changes to the retina could be detected with noninvasive electrophysiological and optical imaging tests during moderately elevated IOP.
METHODS - Intraocular pressures were raised to moderately high levels (35 mm Hg) in one eye of Sprague-Dawley rats while the other (control) eye was untreated. One group of rats underwent scotopic threshold response (STR) and electroretinogram (ERG) testing, while another 3 groups underwent optical coherence tomography (OCT) imaging, Western blot, or histologic evaluation.
RESULTS - The amplitudes of the STR and ERG responses in eyes with moderately elevated IOPs were enhanced compared to the values before IOP elevation, and compared to untreated contralateral eyes. Structural changes to the optic nerve also occurred during IOP elevation.
CONCLUSIONS - Although ischemic IOP elevations are well-known to globally reduce components of the scotopic ERG, acute elevation in rats to levels often observed in untreated glaucoma patients caused an increase in these parameters. Further exploration of these phenomena may be helpful in better understanding the mechanisms mediating early retinal changes during fluctuating or chronically elevated IOP.
0 Communities
1 Members
0 Resources
11 MeSH Terms
Glaucoma Surgery Calculator: Limited Additive Effect of Phacoemulsification on Intraocular Pressure in Ab Interno Trabeculectomy.
Neiweem AE, Bussel II, Schuman JS, Brown EN, Loewen NA
(2016) PLoS One 11: e0153585
MeSH Terms: Aged, Aged, 80 and over, Algorithms, Cohort Studies, Female, Glaucoma, Humans, Intraocular Pressure, Lens, Crystalline, Linear Models, Male, Mathematical Concepts, Middle Aged, Multivariate Analysis, Outcome Assessment (Health Care), Phacoemulsification, Pseudophakia, Trabecular Meshwork, Trabeculectomy, Visual Field Tests
Show Abstract · Added August 31, 2017
PURPOSE - To compare intraocular pressure (IOP) reduction and to develop a predictive surgery calculator based on the results between trabectome-mediated ab interno trabeculectomy in pseudophakic patients versus phacoemulsification combined with trabectome-mediated ab interno trabeculectomy in phakic patients.
METHODS - This observational surgical cohort study analyzed pseudophakic patients who received trabectome-mediated ab interno trabeculectomy (AIT) or phacoemulsification combined with AIT (phaco-AIT). Follow up for less than 12 months or neovascular glaucoma led to exclusion. Missing data was imputed by generating 5 similar but non-identical datasets. Groups were matched using Coarsened Exact Matching based on age, gender, type of glaucoma, race, preoperative number of glaucoma medications and baseline intraocular pressure (IOP). Linear regression was used to examine the outcome measures consisting of IOP and medications.
RESULTS - Of 949 cases, 587 were included consisting of 235 AIT and 352 phaco-AIT. Baseline IOP between groups was statistically significant (p≤0.01) in linear regression models and was minimized after Coarsened Exact Matching. An increment of 1 mmHg in baseline IOP was associated with a 0.73±0.03 mmHg IOP reduction. Phaco-AIT had an IOP reduction that was only 0.73±0.32 mmHg greater than that of AIT. The resulting calculator to determine IOP reduction consisted of the formula -13.54+0.73 × (phacoemulsification yes:1, no:0) + 0.73 × (baseline IOP) + 0.59 × (secondary open angle glaucoma yes:1, no:0) + 0.03 × (age) + 0.09 × (medications).
CONCLUSIONS - This predictive calculator for minimally invasive glaucoma surgery can assist clinical decision making. Only a small additional IOP reduction was observed when phacoemulsification was added to AIT. Patients with a higher baseline IOP had a greater IOP reduction.
0 Communities
1 Members
0 Resources
20 MeSH Terms
Eye-Directed Overpressure Airwave-Induced Trauma Causes Lasting Damage to the Anterior and Posterior Globe: A Model for Testing Cell-Based Therapies.
Bricker-Anthony C, Hines-Beard J, Rex TS
(2016) J Ocul Pharmacol Ther 32: 286-95
MeSH Terms: Animals, Cell- and Tissue-Based Therapy, Disease Models, Animal, Eye Injuries, Intraocular Pressure, Mice, Mice, Inbred BALB C, Oxidative Stress
Show Abstract · Added April 2, 2019
PURPOSE - Characterization of the response of the Balb/c mouse to an eye-directed overpressure airwave, with the hypothesis that this mouse strain and model is useful for testing potential therapeutics for the treatment of traumatic eye injury.
METHODS - The left eyes of adult Balb/c mice were exposed to an eye-directed overpressure airwave. Intraocular pressure (IOP) was measured and eyes were inspected for gross pathology changes. Optical coherence tomography and histology were used to examine the structural integrity of the retina and optic nerve. Immunohistochemistry, in vivo molecular fluorophores, and a multiplex enzyme-linked immunosorbent assay were utilized to identify changes in cell death, neuroinflammation, and oxidative stress.
RESULTS - This model induced a transient increase in IOP, corneal injuries, infrequent large retinal detachments, retinal pigment epithelium (RPE) vacuolization, glial reactivity, and retinal cell death. Both the corneal damage and RPE vacuolization persisted with time. Optic nerve degeneration occurred as early as 7 days postinjury and persisted out to 60 days. Retinal cell death, increased levels of reactive oxygen species, and neuroinflammation were detected at 7 days postinjury.
CONCLUSIONS - The injury profile of the Balb/c mouse is consistent with commonly observed pathologies in blast-exposed patients. The damage is throughout the eye and persistent, making this mouse model useful for testing cell-based therapies.
0 Communities
1 Members
0 Resources
MeSH Terms
Coarsened Exact Matching of Phaco-Trabectome to Trabectome in Phakic Patients: Lack of Additional Pressure Reduction from Phacoemulsification.
Parikh HA, Bussel II, Schuman JS, Brown EN, Loewen NA
(2016) PLoS One 11: e0149384
MeSH Terms: Adolescent, Adult, Aged, Aged, 80 and over, Female, Glaucoma, Open-Angle, Humans, Intraocular Pressure, Male, Middle Aged, Phacoemulsification, Trabeculectomy, Treatment Outcome, Young Adult
Show Abstract · Added August 31, 2017
PURPOSE - To compare intraocular pressure (IOP) after trabectome-mediated ab interno trabeculectomy surgery in phakic patients (T) and trabectome with same session phacoemulsification (PT) using Coarsened Exact Matching. Although phacoemulsification is associated with IOP reduction when performed on its own, it is not known how much it contributes in PT.
METHODS - Subjects were divided into phakic T and PT. Exclusion criteria were follow-up for <12 months and additional glaucoma surgery. Demographics were compared by the Mann-Whitney U test and chi-squared test for continuous and categorical variables, respectively. Multiple imputation was utilized to avoid eliminating data with missing values. Groups were then matched using Coarsened Exact Matching based on age, race, type of glaucoma, baseline IOP, and number of preoperative glaucoma medications. Univariate linear regression was used to examine IOP reduction after surgery; those variables that were statistically significant were included in the final multivariate regression model.
RESULTS - A total of 753 cases were included (T: 255, PT: 498). When all variables except for age were kept constant, there was an additional IOP reduction of 0.05±0.01 mmHg conferred for every yearly increment in age. Every 1 mmHg increase in baseline IOP correlated to an additional IOP reduction of 0.80±0.02 mmHg. Phacoemulsification was not found to be a statistically significant contributor to IOP when comparing T and PT (p≥0.05). T had a 21% IOP reduction to 15.9±3.5 mmHg (p<0.01) while PT had an 18% reduction to 15.5±3.6 mmHg (p<0.01). Number of medications decreased (p<0.01) in both groups from 2.4±1.2 to 1.9±1.3 and from 2.3±1.1 to 1.7±1.3, respectively.
CONCLUSION - Phacoemulsification does not make a significant contribution to postoperative IOP or number of medications when combined with trabectome surgery in phakic patients.
0 Communities
1 Members
0 Resources
14 MeSH Terms
Virus-mediated EpoR76E Therapy Slows Optic Nerve Axonopathy in Experimental Glaucoma.
Bond WS, Hines-Beard J, GoldenMerry YL, Davis M, Farooque A, Sappington RM, Calkins DJ, Rex TS
(2016) Mol Ther 24: 230-239
MeSH Terms: Animals, Axons, Dependovirus, Disease Models, Animal, Erythropoietin, Genetic Therapy, Genetic Vectors, Glaucoma, Humans, Intraocular Pressure, Mice, Mutation, Optic Nerve
Show Abstract · Added February 4, 2016
Glaucoma, a common cause of blindness, is currently treated by intraocular pressure (IOP)-lowering interventions. However, this approach is insufficient to completely prevent vision loss. Here, we evaluate an IOP-independent gene therapy strategy using a modified erythropoietin, EPO-R76E, which has reduced erythropoietic function. We used two models of glaucoma, the murine microbead occlusion model and the DBA/2J mouse. Systemic recombinant adeno-associated virus-mediated gene delivery of EpoR76E (rAAV.EpoR76E) was performed concurrent with elevation of IOP. Axon structure and active anterograde transport were preserved in both models. Vision, as determined by the flash visual evoked potential, was preserved in the DBA/2J. These results show that systemic EpoR76E gene therapy protects retinal ganglion cells from glaucomatous degeneration in two different models. This suggests that EPO targets a component of the neurodegenerative pathway that is common to both models. The efficacy of rAAV.EpoR76E delivered at onset of IOP elevation supports clinical relevance of this treatment.
0 Communities
3 Members
0 Resources
13 MeSH Terms
Short-term increases in transient receptor potential vanilloid-1 mediate stress-induced enhancement of neuronal excitation.
Weitlauf C, Ward NJ, Lambert WS, Sidorova TN, Ho KW, Sappington RM, Calkins DJ
(2014) J Neurosci 34: 15369-81
MeSH Terms: Action Potentials, Animals, Calcium, Capsaicin, Cell Survival, Disease Models, Animal, Diterpenes, Dopamine, Glaucoma, Intraocular Pressure, Mice, Mice, Knockout, Primary Cell Culture, Retinal Ganglion Cells, Stress, Physiological, TRPV Cation Channels
Show Abstract · Added February 12, 2015
Progression of neurodegeneration in disease and injury is influenced by the response of individual neurons to stressful stimuli and whether this response includes mechanisms to counter declining function. Transient receptor potential (TRP) cation channels transduce a variety of disease-relevant stimuli and can mediate diverse stress-dependent changes in physiology, both presynaptic and postsynaptic. Recently, we demonstrated that knock-out or pharmacological inhibition of the TRP vanilloid-1 (TRPV1) capsaicin-sensitive subunit accelerates degeneration of retinal ganglion cell neurons and their axons with elevated ocular pressure, the critical stressor in the most common optic neuropathy, glaucoma. Here we probed the mechanism of the influence of TRPV1 on ganglion cell survival in mouse models of glaucoma. We found that induced elevations of ocular pressure increased TRPV1 in ganglion cells and its colocalization at excitatory synapses to their dendrites, whereas chronic elevation progressively increased ganglion cell Trpv1 mRNA. Enhanced TRPV1 expression in ganglion cells was transient and supported a reversal of the effect of TRPV1 on ganglion cells from hyperpolarizing to depolarizing, which was also transient. Short-term enhancement of TRPV1-mediated activity led to a delayed increase in axonal spontaneous excitation that was absent in ganglion cells from Trpv1(-/-) retina. In isolated ganglion cells, pharmacologically activated TRPV1 mobilized to discrete nodes along ganglion cell dendrites that corresponded to sites of elevated Ca(2+). These results suggest that TRPV1 may promote retinal ganglion cell survival through transient enhancement of local excitation and axonal activity in response to ocular stress.
Copyright © 2014 the authors 0270-6474/14/3415369-13$15.00/0.
0 Communities
2 Members
0 Resources
16 MeSH Terms
Primary cilia signaling mediates intraocular pressure sensation.
Luo N, Conwell MD, Chen X, Kettenhofen CI, Westlake CJ, Cantor LB, Wells CD, Weinreb RN, Corson TW, Spandau DF, Joos KM, Iomini C, Obukhov AG, Sun Y
(2014) Proc Natl Acad Sci U S A 111: 12871-6
MeSH Terms: Animals, Cadaver, Child, Cilia, Humans, Intraocular Pressure, Male, Mechanotransduction, Cellular, Mice, Mice, Inbred C57BL, Mice, Knockout, Oculocerebrorenal Syndrome, Phosphoric Monoester Hydrolases, Sensation, TRPV Cation Channels, Trabecular Meshwork, Transforming Growth Factor beta, Tumor Necrosis Factor-alpha
Show Abstract · Added March 19, 2018
Lowe syndrome is a rare X-linked congenital disease that presents with congenital cataracts and glaucoma, as well as renal and cerebral dysfunction. OCRL, an inositol polyphosphate 5-phosphatase, is mutated in Lowe syndrome. We previously showed that OCRL is involved in vesicular trafficking to the primary cilium. Primary cilia are sensory organelles on the surface of eukaryotic cells that mediate mechanotransduction in the kidney, brain, and bone. However, their potential role in the trabecular meshwork (TM) in the eye, which regulates intraocular pressure, is unknown. Here, we show that TM cells, which are defective in glaucoma, have primary cilia that are critical for response to pressure changes. Primary cilia in TM cells shorten in response to fluid flow and elevated hydrostatic pressure, and promote increased transcription of TNF-α, TGF-β, and GLI1 genes. Furthermore, OCRL is found to be required for primary cilia to respond to pressure stimulation. The interaction of OCRL with transient receptor potential vanilloid 4 (TRPV4), a ciliary mechanosensory channel, suggests that OCRL may act through regulation of this channel. A novel disease-causing OCRL allele prevents TRPV4-mediated calcium signaling. In addition, TRPV4 agonist GSK 1016790A treatment reduced intraocular pressure in mice; TRPV4 knockout animals exhibited elevated intraocular pressure and shortened cilia. Thus, mechanotransduction by primary cilia in TM cells is implicated in how the eye senses pressure changes and highlights OCRL and TRPV4 as attractive therapeutic targets for the treatment of glaucoma. Implications of OCRL and TRPV4 in primary cilia function may also shed light on mechanosensation in other organ systems.
0 Communities
1 Members
0 Resources
18 MeSH Terms